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Abstract of the Dissertation

Sparse Graph Representation and Its Applications

by

Shuchu Han

Doctor of Philosophy

in

Computer Science

Stony Brook University

2017

The structure of real-world data (in the form of feature matrix) includes
crucial information relevant to the performance of machine learning and data
mining algorithms. The structure could be local manifold structure, global
structure or discriminative information based on the requirements of learning
or mining tasks. To model this intrinsic structure, an effective graph represen-
tation like k-nearest neighbor graph is necessary. Considering the increasing
data size in this digital era, efficient sparse graph representations without pa-
rameter tuning are very demanding.

In this thesis, we build novel sparse and nonparametric graph represen-
tation algorithms for unsupervised learning. The theory foundation of our
research works is the similarity graph of Sparse Subspace Clustering. Our re-
search works focus on: (1) alleviate the negative impacts of losing subspace
structure assumption about the data: remove non-local edges and generate
consistent edge connections, (2) solve the scalability issue for large size data:
apply greedy algorithm with ranked dictionaries, (3) applications in unsuper-
vised learning: redundant feature removal for high dimensional data.

Moreover, this thesis includes graph structure analysis which connects to
the quality of graph following Dense Subgraph theory: (1) data label estima-
tion through dense subgraphs for semi-supervised learning, (2) graph robust-
ness which can differentiate the topology and scale of subgraphs.
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Chapter 1

Introduction

1.1 Problem Statement

Graph-based algorithms have played an important role in machine learning
and data mining research, for example, semi-supervised learning, transduc-
tive learning, spectral clustering and unsupervised feature selection. All of
them require a graph representation which models the structure of data as
input. This can be illustrated by Figure 1.1. How to generate a quality graph
representation from the input data is still an open problem and remains to
be solved [7]. This challenge is caused by the lack of theory support [8] and
very few well accepted metrics to measure the quality [9]. Moreover, in most
applications, graphs are constructed based on the user’s own experience and
judgment after considering the goal of learning and mining tasks. As a result,
most graph representations are very arbitrary, and the quality of them is not
guaranteed. With this observation, we find out that the quality of graph rep-
resentation becomes the performance bottleneck for many machine learning
and data mining algorithms.

knowledge	Graph	
representa1on	

Graph-based	
learning	&	mining	

algorithms	
Input	data	

Figure 1.1: The framework of this research work. The problem we are solving
is in the second block from left.

In general, the process of graph construction includes two steps: (1) define
a distance metric for data vectors (we assume data samples are represented
by real value data vectors in this thesis). (2) define a rule to generate edges
(or which connects which in plain language). Based on the type of input
data, existing graph representation methods can be classified into two groups:
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(1) labeled data methods and (2) unlabeled data methods. For labeled data,
the distance metric, or weight of edges, will be learned from data, includ-
ing: information-theoretic metric learning (ITML) [10], large margin nearest
neighbor (LMNN) [11], inference driven metric learning (IDML) [12], linear
neighborhood [13], regular graph with b-matching [14], fitting a graph to vec-
tor data [15] and graph kernel [16]. For unlabeled data, global neighborhood
methods are used, for example, k-nearest neighbor (kNN) graph, ε-ball graph,
kernel graph, empty region graph [17], relative neighbor graph [18], Gabriel
graph [19], β-skeletons graph [20], σ-local graph [21], L1 graph [22] and etc.

In this thesis, we study the problem of how to represent the structure
of unlabeled data with sparse graph. Ideally, we hope our new graph
generation algorithms could have the following three properties: (1) sparsity:
for computational efficiency. (2) scalability: for big data. (3) accuracy: for
exploring the structure of data. To satisfy these requirements, L1 graph be-
comes our best candidate as it is born with sparsity naturally and robustness
to data noise. L1 graph is proposed by Cheng et al. [22] and attracts much
attention of researchers in computer vision research. It seeks a sparse linear
reconstruction of each data vector with other data vectors by exploiting the
sparse property of lasso penalty [23]. In theory, L1-graph is the similarity
graph of sparse subspace clustering (SCC) [24] [25]. It is constructed on a
modified sparse representation framework [26], and based on a group of mixed
theories including sparse linear representation algorithms from statistical sig-
nal processing community [27] [28] [29] [30] and compressive sensing [31] from
signal processing research.

The construction of L1 graph includes n times of optimization processes,
where the value n equals to the number of data samples (vectors) in input
data. Given data: X = [x1, x2, · · ·, xn] ∈ Rd×n, xi ∈ Rd, the optimization
process of L1 graph is:

min
αi

‖αi‖1 subject to xi = Φiαi, (1.1)

where dictionary Φi = [x1, · · ·, xi−1, xi+1, · · ·, xn], αi ∈ Rn−1 is the sparse
code of xi and εi is the approximation error. These sparse codes are the edge
weights of resulted L1 graph. As we can see from minimization (1.1), the
neighbors of vertex xi are sparse as a result of `1 norm constraint. Another
observation is that the minimization (1.1) looks for a linear construction of
xi by using all other data vectors. This phenomenon is called ”data self-
representation”. One advantage of this is that the neighborhood of each datum
will adapt to the data structure itself.
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1.2 Research Challenges

The original L1 graph is the similarity graph of sparse subspace clustering
algorithm. It claims to have sparsity character and a nonparametric graph
generation algorithm. Several advantages of L1 graph are [22]: (1) Robustness
to data noise comparing to graphs that are constructed by using pair-wise dis-
tance, such as kNN graph, (2) Sparsity, and (3) Datum-adaptive neighborhood.
The success of L1 graph requires the input data to have subspace structure.
Several type of data like image data or rigid motion data may satisfy this re-
quirement but other types may not. Since we lose this subspace assumption,
the constructed sparse graph may include lots of meaningless edge connections
(or linear construction).

Recently, several challenges of L1 graph when applying it to general data
are discussed, there are:

1. Existence of non-local edge connections. The local manifold structure of
data is ignored [32] [1] as it only captures subspace structure.

2. Lack of scalability by its high computational cost [22]. As we can see
from Equation (1.1), for each data vector, it solves a `1-norm minimiza-
tion problem which is an iterative optimization process and very time
consuming.

3. Inconsistent edge connections and edge weights. While calculating the
sparse representation for each data vector, `1-minimization solver will
pick one representation (atom) randomly if the dictionary exists a group
of highly correlated atoms (data vectors) [33]. Moreover, If there are
duplicate data vectors, the solver will return only one edge connection
to one of its duplications [22].

4. The success of L1 graph is based on the assumption that data has sub-
space structure. For data without this assumption, the linear sparse
representation (reconstruction) returned from `1-minimization solver is
wrong and the edge connections and weights are meaningless. As a re-
sult, noisy edge connections will exist in the generated graph.

1.3 Research Contributions

In this dissertation, we present novel sparse graph representations to model
the structure of data. Our proposed algorithms don’t make any assumption
about the input data comparing to the original L1 graph which requires the
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data to have subspace structure. Particularly, the contributions of this thesis
are summarized as follows:

1. We first alleviate the existing of non-local edges problem by limiting the
dictionary of sparse representation to its nearest neighbors under Eu-
clidean distance. With this “hard” constraint, the edge connections are
forced to occur within local neighbors. Our observation from experiment
results shows that the locality of data is well preserved by adding this
constraint. Moreover, with a small-sized dictionary, the construction of
L1 graph becomes more efficient. However, we bring an additional pa-
rameter about the size of dictionary into original L1 graph construction.

2. Selecting dictionary locally based on Euclidean distance is suitable for
data that has convex cluster boundary. However, for data with non-
convex cluster shapes, Euclidean distance has a risk to bring data vectors
(atoms) belonging to other clusters into the current dictionary for sparse
coding. Here, the manifold structure of data becomes critical. We then
propose diffusion distance to capture the geometry shape of input data.
This structural aware approach is proved to be very efficient for clustering
data with explicit non-convex geometry shapes.

3. Scalability is an urgent and not yet solved problem for original L1 graph
construction algorithm as it involves many (linearly increasing with data
size) optimization (sparse coding) processes which are time consuming.
With recent research works in subspace learning about greedy `1 min-
imization solver, we propose a greedy algorithm based on orthogonal
Matching Pursuit (OMP) solver and ranked dictionaries to accelerate
the construction of L1 graph. The advantages of our algorithm is that
it not only speeds up the construction but also solves the inconsistent
edge connection problem.

4. We also invest our research effort in graph structure analysis and apply
it into downstream applications. We propose a graph-based algorithm
for one computational biology application. The goal is to remove Batch
Effect which exists among Microarray experiment data from different
sources. A sparse graph is first constructed from the data and then we
use the dense subgraphs extracted from the data. Moreover, we pro-
pose robust local subgraph by using robustness as density measurement.
Comparing to the dense subgraphs defined by classical edge density,
the robustness metric not only can measure the difference of subgraph
topologies, but also can differentiate the subgraph size.
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5. We successfully apply our sparse graph representation works to high di-
mensional data which has more features than samples. The goal is to
remove the redundant features existed in high dimensional data. The
proposed sparse feature graph is a natural way to encode the group re-
dundancy among features. This group redundancy is always neglected
by pairwise redundancy which is more popular in machine learning re-
search. Our research work combines the sparse graph representation
and dense subgraph mining techniques, and demonstrates to be a very
efficient tool for redundant feature removal.

1.4 Dissertation Organization

The remainder of this thesis is organized as follows. In Chapter 2, we review
different graph construction methods in machine learning research and the
`1 minimization problem. Moreover, we review the dense subgraph mining
techniques that are related to our future research on graph structure analy-
sis. In Chapter 3, we propose an improved version of L1 graph with locality
preserved. At the same time, we also evaluate the quality of generated graph
for spectral clustering by using different distance metrics. In Chapter 4, we
introduce a greedy algorithm to construct sparse graph with ranked dictio-
nary. In Chapter 5, we present an application in computational biology by
using graph algorithm to remove batch effects among Microarray experiment
data from different sources. In Chapter 6, we use robustness metric to define
the edge density of dense subgraphs, and a heuristic algorithm to search those
robustness subgraphs. In Chapter 7, we propose sparse feature graph to model
the feature redundancy existed in high dimensional data, and present a dense
subgraph based approach to locating the redundant feature groups. In Chap-
ter 8, we introduce a graph embedding research work in social science research.
Finally, we conclude this thesis and outline some future research directions in
Chapter 9.
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Chapter 2

Background Review

Our research works are based on L1 graph from sparse subspace clustering, L1

minimization, spectral embedding and clustering and dense subgraph theory.
In this chapter, we briefly review the basic ideas of related techniques and
analyze their properties.

2.1 Graph Construction Methods for Similar-

ity Measures

For graph-based learning algorithms, a graph is required to represent the sim-
ilarity among data vectors (here we assume each data sample is represented
by a real value data vector). The “Similarity” and “Distance” are reversed
relationship: high similarity means short distance. Given a set of data vec-
tors, and a distance metric in this vector space, a graph representation can be
constructed by following a special edge construction rule. And with different
rules, we have different graph construction methods. In this section, we briefly
introduce several well-known graph construction methods.

Assume the input data is: X = [x1, x2, · · ·, xn], where xi ∈ Rd, and a
distance metric d(xi, xj) is defined over the space Rn×d, then we can construct
different graph representations by following methods:

kNN graph. This graph connects each data sample to its first k nearest
neighbors based on distance d(xi, xj).

ε-ball graph. This graph selects edge/no-edge between two data vectors by
their distance: d(xi, xj) ≤ ε.
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L1 graph. L1 graph seeks a sparse linear reconstruction for each data vector
with all other data vectors by exploiting the sparse property of the Lasso
penalty [23]. This is fundamentally different from the traditional ones as
the edge connections and edge weights are pure numerical results form L1

minimization solver.
The L1 graph construction algorithm [22] can be described by:

Algorithm 1: L1-Graph

Input : Feature matrix: X = [x1, x2, · · ·, xn] ∈ Rd×n, where xi ∈ Rd.
Output: Adjacency matrix W of L1 graph.

1 Normalization: normalize each data vector xi to has unit length:
‖xi‖2 = 1;

2 L1 minimization: For each vector xi, its sparse coding coefficients are
calculate by solving the following optimization:

minαi‖αi‖1, s.t. ‖xi −Φiαi‖2 ≤ εi,

where matrix Φi = [x1, · · ·, xi−1, xi+1, · · ·, xn] ∈ Rd×(n−1),
αi ∈ Rn−1 and εi is the approximation error;

3 Graph edge weight setting: Denote W = (V,E), where V is the set
of data vectors as graph vertices, and E is the set of weighted edges.
We set edge weight from xi to xj by αi(j), where 1 ≤ j ≤ n, j 6= i.
(non-negativity constraints may be imposed for αi(j) in optimization
if for similarity measurement). If i < j, edge weight of (xi, xj) is:
E(i, j) = αi(j − 1);

As we can see, for each data vector, we need to solve a `1 minimization
problem. This optimization process can be solved in polynomial time by stan-
dard linear programming method.

2.2 L1 Minimization.

L1 minimization is a classical problem in optimization and signal process-
ing communities. In compressive sensing theory, it has been shown to be
an efficient approach to recover sparest solutions to certain under-determined
systems of linear equations. Comparing to Equation 1.1, the more general L1

minimization problem solves the following convex program:

min ‖x‖1, subject to b = Ax, (2.1)

8



where A ∈ Rd×n is an under-determined (d �n) full-rank matrix. Assume
x0 ∈ Rn is an unknown signal, and b is the observation of x0 through matrix
A, the compressive sensing theory try to discover whether the solution of
Equation 2.1 can recover signal x0.

Coherence. Compressive sensing theory shows that if x0 sparse enough and
the sensing matrix A is incoherent with the basis under which x0 is sparse,
x0 can be recovered exactly [34] [28]. The sensing matrix A is also called
as “Dictionary” and coherence [35] is used to measure the correlation among
atoms of dictionary. The coherence is defined as:

µ = max
i 6=j
| < ψi,ψj > |, (2.2)

where ψ· is the column of matrix A. In words, the coherence is the cosine of
the acute angle between the closest pair of atoms. Informally, a dictionary is
incoherent if the value µ is smaller than a threshold.

Minimization solvers. In practical, the equation b = Ax is often relaxed
to take into account the existence of measurement error in the recovering
process: b = Ax+ e. Particularly, if the error term e is assumed to be white
noise such that ‖e‖2 ≤ ε, the ground truth signal x0 can be well approximated
by the basis pursuit denoising(BPDN) [36].

min ‖x‖1 subject to ‖b−Ax‖2 ≤ ε. (2.3)

The methods that solver the above minimization problem include but not limit
to: gradient projection [37], homotopy [38], iterative shrinkage-thresholding [39],
proximal gradient [40], and augmented Lagrange multiplier [41].

In our research works, we use the truncated Newton interior-point method
(TNIPM) [37] as our optimization solver. The object function 2.3 is rewritten
as below by using Lagrangian method:

x∗ = arg min
x

F (x) = arg min
x

1

2
‖b−Ax‖2

2 + λ‖x‖1, (2.4)

where λ is the Lagrangian multiplier. The TNIPM transfers the above object
function into a quadratic program with inequality constraints:

min
1

2
‖Ax− b‖2

2 + λ

2∑
i=1

ui, s.t.− ui ≤ xi ≤ ui, i = 1, · · · , n. (2.5)
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Then a logarithmic barrier for the constraints −ui ≤ xi ≤ ui can be con-
structed:

Φ(x,u) = −
∑
i

log(ui + xi)−
∑
i

log(ui− xi), (2.6)

Over the domain of (x,u), the central path consists of the unique minimizer
(x∗,u∗) of the convex function

Ft(x,u) = t(‖Ax− b‖2
2 + λ

2∑
i=1

ui) + Φ(x,u), (2.7)

where the parameter t ∈ [0,∞). The function can then be minimized by
standard interior-point algorithms.

2.3 Spectral Embedding and Clustering

The goal of clustering is to partition data into different subsets, such that the
data within each subset are similar to each other. The spectral clustering [42]
algorithm show its elegant over other clustering algorithms by its ability to
discover embedding data structure. Spectral clustering algorithm has strong
connection with graph cut, i.e., it uses eigenspace to solve a relaxed form of
the balanced graph partitioning problem [43]. It has advantage on capturing
nonlinear structure of data with using nonlinear kernels, which is difficult for
k-means [44] or other linear clustering algorithms. The spectral clustering
algorithm can be described as following:

In the above spectral clustering algorithm 2, the affinity matrix W can be
seen as a weighted undirected graph, and this graph encode the local informa-
tion about the data. The weight of graph is calculated from certain similarity
kernels such as Gaussian kernel. When apply L1 graph as the input of spec-
tral clustering, we use a math trick: W = (|W |+ |W |)/2 to symmetrize the
matrix W .

2.4 Dense Subgraph

Dense subgraph problem is a fundamental research in learning the structure
of graph. Given a graph G = (V,E), if the edges are weighted, we use w(u) to
represent the weight of edge u. Unweighted graphs are the special case where
all weights are equal to 1. Let S and T be subsets of V . For an undirected
graph, E(S) is the set of induced edges on S : E(S) = (u, v) ∈ E|u, v ∈ S
Then HS is the induced subgraph (S,E(S)). Similarly, E(S, T ) designates the
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Algorithm 2: SpectralClustering(X, c)

Input : X ∈ Rn×m where n is #instances, m is #features, and c is
#clusters.

Output: Cluster assignments of n instances.

1 Construct the affinity matrix W ∈ Rn×n;

2 Compute the diagonal matrix D ∈ Rn×n where D(i, i) =
n∑
j=1

W (i, j)

and D(i, j) = 0 if i 6= j;
3 Apply the graph Laplacian L = Rn×n using Lnn = D −W ,

Lnn = I −D−1W or Lsym = I −D−1/2WD1/2 where I ∈ Rn×n is
an identity matrix;

4 Extract the first c nontrivial eigenvectors Ψ of L,
Ψ = {ψ1, ψ2, · · ·, ψc};

5 Re-normalize the rows of Ψ ∈ Rn×c into Yi(j) = ψi(j)/(
∑

lψi(l)
2)1/2;

6 Run k-means with c and Y ∈ Rn×c;

set of edges from S to T . HS,T is the induced subgraph (S, T,E(S, T )). S and
T are not necessarily disjoint from each other.

For a subgraph S, the density den(S) is defined as the ratio of the total
weight of edges in E(S) to the number of possible edges among |S| vertices. If
the graph is unweighted, then the numerator is simply the number of actual
edges, and the maximum possible density is 1. if it is weighted, the maximum
density is unbounded. The number of possible edges in a graph of size n is(
n

2

)
= n(N − 1)/2. Several edge density definitions are:

den(S) =
2|E(S)|
|S|(|S| − 1)

, (2.8)

denw(S) =
2 ∗
∑

u,v∈S w(u, v)

|S|(|S| − 1)
, (2.9)

denavg(S) =
2|E(S)|
|S|

, (2.10)

where den(S) is for unweighted graph, denw(S) is for weighted graph and
denavg(S) is the average edge density for unweighted graph.

Subgraphs have different forms (or names) by considering its structure
property. In the following we introduce several important forms that related
to our research works.
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Clique. a clique is a subgraph which all its vertices are connected to each
other. A maximum clique of a graph is a clique having maximum size and its
size is called the graph’s clique number. A maximal clique is a clique that is
not a subset of any other clique.

Densest subgraph. The densest-subgraph problem is to find a set S that
maximizes the average degree. Finding the densest subgraph in a given graph
is a P problem by solving a parametric maximum-flow problem [45]. However,
if we put size restriction on |S|, this problem becomes NP-hard [46].

Quasi-clique. A set of vertices S is an α-quasi-clique if E[S] ≥ α
(
|S|
2

)
,

i.e., if the edge density of the subgraph exceeds a threshold parameter α ∈
(0, 1).
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Chapter 3

Locality-Preserving and
Structure-Aware L1 Graphs

In this chapter, we propose two types of improved L1 graphs. The first one
is a Locality-Preserving L1 graph (LOP-L1), which preserves higher local-
connections and at the same time maintains sparsity. The second one is a
structure aware L1 graph by encoding the intrinsic manifold structure of data.
The difference with previous one is that it ranks a data point’s nearest neigh-
bors by manifold ranking score which takes the data’s geometry structure into
account. Comparing with original L1 graph and its other regularization-based
versions, these two methods require less amount of running time in the scala-
bility test. We evaluate the effectiveness of them by applying it to clustering
application, which confirms that the proposed algorithms outperform related
methods.

3.1 Chapter Introduction

Among many techniques used in the machine learning society, graph-based
mining mainly tries to accommodate the so-called cluster-assumption, which
says that samples on the same structure or manifold tend to have large weight
of connections in-between. But most of the time there is no explicit model
for the underlying manifolds, hence most methods approximate it by the con-
struction of an undirected/directed graph from the observed data samples.
Therefore, correctly constructing a good graph that can best capture essential
data structure is critical for all graph-based methods [47].

Ideally, a good graph should reveal the intrinsic relationship between data
samples on manifold, and also preserve the strong local connectivity inside
neighborhood (called as locality in the following sections). Traditional meth-
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ods (such as k-nearest neighbors (kNN) [48], ε-neighborhood [48] and Gabriel
graph (GG) [49]) mainly rely on pair-wise Euclidean distances to construct the
locally-connected graph. The obtained graphs oftentimes fail to capture local
structures and cannot capture global structures of the manifold [47]. Besides,
these methods either cannot provide datum-adaptive neighborhoods because
of using fixed global parameters [49], or are sensitive to the parameter setting
or local noise especially on high-dimensional datasets [50].

Recently, Cheng et al. [22] proposed to construct an L1 graph via sparse
coding [26] by solving an L1 optimization problem. L1 graph is derived by
encoding each datum as a sparse representation of the other samples (treated
as basis or dictionary pool), and automatically selecting the most informative
neighbors for each datum. The nice properties of L1 graph include: 1) sparsity,
which leads to fast subsequent analysis and low requirement for storage [26],
2) datum-adaptive neighborhoods and 3) robustness to data noise as claimed
in [22].

However, the constructing of classic L1 graph suffers from the loss in the
locality of the samples to be encoded, which is a fundamental drawback from
sparse coding [51]. Usually, the number of samples is much greater than the
number of manifold dimensions, which means that the basis pool is “overcom-
plete” during the construction of L1 graph. Samples may be encoded with
many basis (samples) with weak correlations with the object samples under
such “overcomplete” basis pool. Thus, it results in the inaccuracy of L1 graph,
and therefore impedes the quality of the consequent analysis tasks. As an il-
lustration, Fig.3.1(e) shows that under classic L1 graph construction, the code
of a sample point p (red cross in Fig.3.1(b)) involves many basis (samples)
that do not belong to the same cluster with p. Such instability may hinder
the robustness of the L1 graph based data mining applications, as shown in
Fig.3.1(f). To address this issue, we propose a Locality-Preserving L1 graph
(LOP-L1) to learn more discriminative sparse code and preserve the locality
and the similarity of samples in the sparse coding process, and therefore the
robustness of the data analysis result is enhanced. Our contributions are as
follows:

1. LOP-L1 preserves locality in an datum-adaptive neighborhood, and
at the same time maintains sparsity from classic L1.

2. The computation of LOP-L1 is more scalable than classic L1 graph
and the succeeding regularization-based techniques.

3. We confirm the effectiveness of LOP-L1 in the application of clustering.
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Figure 3.1: Illustration of LOP-L1 effectiveness compared with Gaussian
(similarity) graph and classic L1. The labels of sample in the original dataset
(Fig.3.1(b)) are showed in Fig.3.1(a), and in this example we only focus on
the coding of point p (the 150-th sample, marked as red cross in Fig.3.1(b)).
Coding (similarity) of p on Gaussian graph (Fig.3.1(c)) is built upon Euclidean
space, which leads to manifold non-awareness (Fig.3.1(d)). Classic L1 graph
coding (Fig.3.1(e)) results in the loss of locality and therefore instable cluster-
ing result (Fig.3.1(f)). Comparatively, our LOP-L1 coding on p (Fig.3.1(g))
shows strongly locality-preserving characteristic and has the best performance
in clustering, as shown in Fig.3.1(h).

3.2 Related Works

L1 graph is an informative graph construction method proposed by Cheng et
al. [22]. It represents the relations of one datum to other data samples by
using the coefficient of its sparse coding. The original L1 graph construction
algorithm is a nonparametric method based on the minimization of a L1 norm-
based object function.
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The advantages of L1 graph are summarized as follows: (1) robustness to
data noise; (2) sparsity for efficiency; and (3) datum-adaptive neighborhood.
Because of these virtues, L1 graph has been applied to many graph based
learning applications [22], for example, subspace learning [22], image classifi-
cation [47] and semi-supervised learning [52] etc. However, classic L1 graph
[22] is a purely numerical solution without physical or geometric interpretation
of the data set [53]. Therefore, to better exploit the structure information of
data, many research works have been proposed by adding a new regulariza-
tion term in addition to the original Lasso penalty, for example, the elastic net
regularization [53], OSCAR regularization [53] and graph-Laplacian [3].

Another research focus of L1 graph is to reduce its high computational
cost. For each datum, the L1 graph need to solve an L1 minimization problem
within a large basis pool which is very slow. To reduce the running time, Zhou
et al. [1] proposed a kNN Fused Lasso graph by using the k-nearest neighbors
idea in kernel feature space. With a similar goal, Fang et al. [53] proposed
an algorithm which firstly transfers the data into a reproducing kernel Hilbert
space and then projects to a lower dimensional subspace. By these projections,
the dimension of dataset is reduced and the computational time decreased.

In our research we evaluate the performance of different graph construc-
tions in terms of clustering. Specifically we integrate the constructed graph
into the framework of spectral clustering, due to its popularity and its ability
to discover embedding data structure. Spectral clustering starts with local in-
formation encoded in a weighted graph on input data, and clusters according
to the global eigenvectors of the corresponding (normalized) affinity matrix.
Particularly, to satisfy the input of spectral clustering algorithm, we transform
the adjacency matrix of L1 graph into a symmetry matrix manually.

3.3 LOP-L1 Graph

The construction of classic L1 graph [22] is a global optimization which is short
of local-structure awareness. Moreover, it has a high time complexity, since for
each datum it needs to solve a L1-minimization problem 2.3. For each sample
xi, the global optimization aims at selecting as few basis functions as possible
from a large basis pool, which consists of all the other samples (basis), to
linearly reconstruct xi, meanwhile keeping the reconstruction error as small as
possible. Due to an overcomplete or sufficient basis pool, similar samples can
be encoded as totally different sparse codes, which may bring about the loss
of locality information of the samples to be encoded. To preserve such locality
information, many researches add one or several regularization terms to the
object Eq. 2.3 as in [32] [1] and etc. However, there is a lack of generality for
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these methods and the regularization-based approaches are, as widely known,
very time consuming.

Here, we propose a much more general and concise approach, called Locality-
Preserving L1-Graph (LOP-L1), by limiting the basis pool in a local neigh-
borhood basis of the object sample. Our algorithm only uses the k nearest
neighborhoods of the object sample as the basis pool, and the definition of the
object function minimization is as follows:

Definition 1. The minimizing object function of LOP-L1 is defined as:

min
αi

‖αi‖1, s.t. xi = Γiαi, αi ≥ 0, (3.1)

where Γi = [xi1, x
i
2, · · ·, xik] is the k-nearest neighbors of xi in the data set,

with the constraint that all the elements in αi are nonnegative.

The weights of edges in the LOP-L1 graph are obtained by seeking a non-
negative low-rank and sparse matrix that represents each data sample as a
linear combination of its constrained neighborhood. The constructed graph
can capture both the global mixture of subspaces structure (by the coding
process) and the locally linear structure (by the sparseness brought by the
constrained neighborhood) of the data, hence is both generative and discrim-
inative. Furthermore, by introducing such a locality preserving constraint to
the sparse coding process, the similarity of sparse codes between similar lo-
cal samples can be preserved. Therefore, the robustness of the subsequent
data analysis task (e.g. spectral clustering) is enhanced. Limiting the size of
basis pool also leads to a benefit of reducing the running time of L1 graph
construction.

The details of our proposed LOP-L1 is described in Algorithm 3. It is
worth to point out that our proposed LOP-L1 doesn’t prevent users to add
specific regularization terms during the optimization for a special application.

In our implementation, we select one gradient-project-based method called
truncated Newton interior-point method (TNIPM) [37] as the L1 minimization
solver, which has O(N1.2) empirical complexity where N is the number of
samples. The L1-minimization object function we used is:

arg min
x
‖Ax− b‖2 + λ‖x‖1, (3.2)

where λ is the Lasso penalty parameter. We choose λ = 1 in our experiments
as many methods also choose.

Analysis of Time Complexity. Here we analyze the time efficiency of
LOP-L1 by comparing its running time with classic L1 graph. L1 graph with

17



Algorithm 3: LOP-L1-Graph

Input : Data samples X = [x1, x2, · · ·, xN ], where xi ∈ Rm;
Parameter t for scaling k-nearest neighborhood, where
k = t ∗m (check Section 3.5.1 for more details).

Output: Adjacency matrix W of L1 graph.

1 Normalize the data sample xi with ‖xi‖2 = 1;
2 for xi ∈X do
3 Find k-nearest neighbors of xi:Γ

i = [xi1, · · · , xik];
4 Let Bi = [Γi, I];
5 Solve: min

αi

‖αi‖1, s.t. xi = Biαi, and αi ≥ 0;

6 end
7 for i = 1 : N do
8 for j = 1 : N do

/* get the sparse code for each xi */

9 if xj ∈ Γi then
/* pos(xj) is the position of xj in nbi */

10 W (i, j) = αi(pos(xj))

11 else
12 W (i, j) = 0
13 end

14 end

15 end

TNIPM solver has O(N1.2) [54] empirical complexity. Our LOP-L1 algorithm
reduces the size of basis pool from N to k = t∗m, so the empirical complexity
will be O(Nk1.2). To demonstrate the time reduction, we test the CPU time
of LOP-L1 and (classic) L1 over a series of random data sets which have 50
attributes and sample size from 101 to 104. The result is presented in Fig.2,
which shows our proposed LOP-L1 has much better scalability.Analysis and Connections We now justify the LOP-L1 utility by briefly
documenting its theoretic connections with a few existing methods, which also
lays a solid foundation for LOP-L1’s attractive properties in practical use.

LOP-L1 vs Classic kNN-Graph. Compared with our proposed LOP-
L1, the classic kNN graph [48] can be generated very fast, but they achieve
this with a sacrifice on the quality. Classic kNN graph-based methods can
be easily affected by noises, especially those samples which are not in the
same structure while being very close in the misleading high-dimensional Eu-
clidean space. The fundamental difference between classic kNN graph and our
proposed LOP-L1 is that the former is highly dependent on the pre-specified
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Figure 3.2: Scalability comparison between LOP-L1 graph and classic L1

graph.

sample-sample similarity measure used to identify the neighbors, whereas the
later generates an advanced similarity matrix W by solving the optimization
problem of Equation 3.2. In this way, W can potentially encode rich and subtle
relations across instances that may not be easily captured by conventional sim-
ilarity metrics. This is validated by the experimental results in Section 5 that
show the LOP-L1 substantially outperforms classic kNN graph in clustering
application.

LOP-L1 vs Classic L1-Graph. Our proposed LOP-L1 is built upon
classic L1, but has unique theoretical contributions and huge improvement
on performance. As we mentioned earlier, the coding process of L1 suffers
from the “overcomplete” basis pool. The optimization of L1 is solved by a
straightforward numerical solution: every time the L1-minimization picks up
the basis randomly from a group of “highly similar data samples” [33]. How-
ever, if the sample dimension is high, the similarity evaluation on Euclidean
space would be highly misleading, which is a well-known problem. Therefore,
together with a large-size basis pool, the basis L1 picks up are not guaran-
teed to be in the same manifold with the object sample. In our proposed
LOP-L1, we restrain the coding process from picking up those samples outside
certain neighborhood. In other words, the samples/basis are locally coded,
and LOP-L1 brings a dramatic improvement of performance and stability on
the subsequent analysis step. We will further confirm this in the Experiment
Section 5.

LOP-L1 vs Regularization-based L1-Graph. Specifically, the idea of
our LOP-L1 is close to the kNN Fused Lasso graph proposed by Zhou et al. [1].
However, our algorithm is different at: (1) there is no regularization term in
our L1 minimization; (2) we process the data samples at original data space
instead of at kernel feature space. Generally speaking, our LOP-L1 is designed
in a more concise and efficient way compared with the regularization-based
techniques such as [32] [1].
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LOP-L1 vs Recommender Systems and Collaborative Filtering.
Similar to the linear coding used in our proposed LOP-L1, Paterek [55] in-
troduced a recommender system that linearly models each item for rating
prediction, in which the rating of a user uj on an item vk is calculated as the
aggregation of the ratings of uj on all similar items (given by kNN graph).
Intuitively, in our LOP-L1 we can treat W (i, j) as a rating of sample xi to
sample xj, which is derived by a subset of xi’s nearest neighbors, and predic-
tion of W (i, j) is generated based on a weighted aggregate of their ratings. In
other words, LOP-L1 realizes the concept of collaborative filtering [55] within
a constraint neighborhood that brings locality-preserving property, of which
advantages in recommender systems has been analyzed and confirmed in [56].

3.4 SA-L1 Graph

In this section, we propose a Structure Aware (SA) L1 graph to improve the
data clustering performance by capturing the manifold structure of input data.
We use a local dictionary for each datum while calculating its sparse coeffi-
cients. SA-L1 graph not only preserves the locality of data but also captures
the geometry structure of data. The experimental results show that our new
algorithm has better clustering performance than L1 graph.
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Figure 3.3: Dictionary normalization of two moon dataset. The red and blue
points represent different clusters. Left: before normalization, right: after
normalization. We can see that the neighborhood information is changed after
normalization.

One less attractive aspect of L1 graph construction algorithm is the nor-
malization of dictionary. While calculating the sparse coefficient (or L1 mini-
mization), it requires all dictionary atoms (or data sample) to have unit length.
Usually, we use L2 normalization. This normalization process project all atoms
to unit hypersphere and eliminates the locality information of data as show
by figure 3.3. As we can see, the neighborhood information is changed after
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normalization.
Comparing to the strategy of adding regularization terms, we choose to

search a local dictionary for each data sample while calculating the sparse
coefficients. Unlike the method described in [4] which use the k-nearest neigh-
bor as dictionary, we select atoms following the intrinsic manifold structure of
data. The advantage of our selection is that it not only preserves the local-
ity, but also captures the geometry structure of data (figure 3.4). As pointed
out by [3], in many real applications, high-dimensional data always reside on
or close to an intrinsically low dimensional manifold embedded in the high-
dimensional ambient space. This is the fundamental assumption of manifold
learning and also emphasizes the importance of utilizing manifold structure
in learning algorithms. Our proposed algorithm has a user specific parameter
k which leads to the lost of parametric-free characteristic. But our experi-
ment results show that it increases the clustering performance and reduces the
running time.
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Figure 3.4: L1 graph (Left) and SA-L1 graph (Right,K = 10) of “two moon”
dataset.

The basic idea of L1 graph is to find a sparse coefficient (or coding) for
each data sample. Given dataset X = [x1,x2, · · · ,xn], where xi ∈ Rm, i ∈
[1, · · · , n] is a vector which represents a data sample. The sparse coefficient
αi ∈ Rn−1 of xi is calculated by following L1 minimization process.

min
αi

‖αi‖1 subject to xi = Φiαi,αi ≥ 0. (3.3)

We put constraint αi ≥ 0 here to let coefficients have physical meaning of
similarity. In original L1 graph construction algorithm, the dictionary Φi =

[x1, · · · , xi−1, xi+1, · · · , xn]. Here, we select K atoms Φ̂
i

= [x̂1, · · · , x̂K]
from Φi by using manifold ranking scores [57] [58]. The algorithm can be
described as Algorithm 4.

We use the closed form solution to calculate the manifold ranking scores
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for all data samples:
F = (I − βS)−1, (3.4)

where S is the Graph Laplacian matrix and we use Gaussian Kernel (parameter
σ is configured as the mean distance) here. Each column of F is the relative
manifold ranking scores of data sample xi.

Algorithm 4: SA-L1 graph

Input : Data samples X = [x1,x2, · · · ,xn], where xi ∈ X;
Parameter K;

Output: Adjacency matrix W of sparse graph.

1 Calculate the manifold ranking score matrix F;
2 Normalize the data sample xi with ‖xi‖2 = 1;
3 for xi ∈ X do

4 Select top K atoms from F(i), and build Φ̂
i

;

5 Solve: min
αi

‖αi‖1, s.t. xi = Φ̂
i
αi, αi ≥ 0;

6 W(i, :) = αi;

7 end
8 return W;

3.5 Experiments

3.5.1 Experiment Setup

Dataset. To demonstrate the performance of our proposed LOP-L1 graph
and structure aware SA-L1 graph. we evaluate our algorithm on seven UCI
benchmark datasets including three biological data sets (Breast Tissue(BT),
Iris, Soybean), two vision image data set (Vehicle, Image,) and one chem-
istry data set (Wine) and one physical data set (Glass), whose statistics are
summarized in Table 3.1. All these data sets have been popularly used in
spectral clustering analysis research. These diverse combination of data sets
are intended for our comprehensive studies.

Baseline. To investigate the quality of the generated LOP-L1 graph, we
compare its performance on spectral clustering applications with L1 graph. At
the sample time, we also select a full-scale Gaussian similarity graph (Gaussian
graph), and a kNN Gaussian similarly graph (kNN graph) as our competitors
to understand the quality of LOP-L1 graph better. Since we have ground truth
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Name #samples #attributes #clusters
Iris 150 4 3
BT 106 9 6
Wine 178 13 3
Glass 214 9 6
Soybean 307 35 19
Vehicle 846 18 4
Image 2000 19 7

Table 3.1: Datasets Statistics.

of labels for each data, we evaluate the spectral clustering performance with
Normalized Mutual Information (NMI) and Accuracy (AC).

Parameter Setting. For LOP-L1 graph, the algorithm has one parameter
named as basis pool scaling parameter t. It controls how many neighborhoods
should be selected to the basis pool for each sample coding. We set t as a
multiple value of attribute (or features) size w.r.t the data set.

2 ≤ t ≤ N

m
, (3.5)

where N is the number of samples and m is the sample dimensions. The
reason we scale kNN neighborhood with Eq.3.5 is that we want to make it
more adaptive to different context. In our experiments, we assign t = 2, 3, 4
and report the clustering performance results respectively. We will further
analyze our selection of t in Section 3.5.2.

For Gaussian graph, the scaling parameter σ is configured as σ = 0.1, 0.5, 1.0.
For kNN graph, we assign value of k as the size of basis pool of LOP-L1 graph
with different t setting respectively. To obtain a fair comparison, we apply the
same spectral clustering to measure their performance.

For SA-L1 graph, we select β = 0.99 for manifold ranking, and value K
of kNN graph with Gaussian similarity (parameter σ equals to mean value)
equals to 10%,20% and 30% percent of total number of data samples.

3.5.2 Analysis of Basis Pool Scaling

In our algorithm we argue that a constrained neighborhood as basis pool is not
only enough but also provide locality property for the L1 graph construction.
On the other hand, one of the most serious problem for kNN-based method
is the over-sparsity where each sample has only a small amount of connected
neighbors, which often results in that the derived graph is bias to some closely-
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Figure 3.5: The change of NMI values w.r.t different selection of parameter
t. Red dot in each subplot represents the maximal NMI. These experiments
confirm that a basis neighborhood with certain size (with smaller t) provides
better (or at least similar) performance than the overcomplete basis pool (with
the maximal t in each subplot). 24



connected “cliques” and the subsequent analysis is therefore unreliable.
We confirm the effectiveness of our strategy by recording the trend of NMI

value with increasing size of t (up to the maximal t w.r.t each dataset) in
Fig. 3.5 across different dataset. It once again confirms that we don’t need
all remain samples as the basis pool to construct an informative yet stable L1

graph.

3.5.3 Performance of LOP-L1 Graph

In this section, we evaluate our proposed LOP-L1 graph algorithm and other
three graph construction algorithms. Table 3.2 and Table 3.3 document the
comparison results (in NMI and AC) of clustering performance.

LOP-L1 graph vs L1-Graph. LOP-L1 graph has better average per-
formance than L1 graph. LOP-L1 graph has average NMI value 0.5032 and
AC value 0.5852 while L1 graph has average NMI value 0.4611 and AC value
0.5643. For each specific data set, the clustering performance of L1 graph
beats average performance of LOP-L1 graph on Iris, BT, Image but lose on
others. Moreover, we observe that the highest NMI value between them occurs
at a specific t value of LOP-L1 graph, for example, the highest NMI values of
Image data set is at t = 2, 3 of LOP-L1 graph.

LOP-L1 graph vs kNN-Graph. The average clustering performance
of kNN graph is the lowest one among Spectral Clustering with Gaussian
similarity graph, L1 graph and LOP-L1 graph. Comparing to LOP-L1 graph,
kNN graph only have better performance (NMI: 0.4739, AC: 0.5346) than
LOP-L1 graph (NMI: 0.4328, AC: 0.5189) on BT data set.

LOP-L1 graph vs Gaussian Similarity Graph. The spectral cluster-
ing with Gaussian similarity graph (fully connected graph) has lower average
performance than LOP-L1 graph in our experiments. However, for specific
data set, the maximum values of NMI and AC not always belong to LOP-L1

graph. For example, the highest NMI value for Iris data set is Gaussian simi-
larity graph with σ = 0.1. The reason is that the spectral clustering based on
Gaussian similarity graph is parameter sensitive. To obtain the best result,
the user has to tune the parameter σ.

3.5.4 Performance of SA-L1 Graph

Comparing to LOP-L1 graph, SA-L1 graph shows overall better performance
than Gaussian similarity graph and original L1 graph as show by Table 3.4.
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Name Gaussian graph kNN graph L1 graph LOP-L1 graph
σ = 0.1 σ = 0.5 σ = 1.0 t = 2 t = 3 t = 4 t = 2 t = 3 t = 4

Iris 0.8640 0.5895 0.7384 0.4831 0.5059 0.3139 0.7523 0.5794 0.7608 0.7696
BT 0.4933 0.4842 0.4691 0.4731 0.5335 0.4150 0.3660 0.3912 0.4536 0.4536
Wine 0.4540 0.7042 0.6214 0.6647 0.7471 0.7031 0.6537 0.8358 0.8500 0.8500
Glass 0.3535 0.2931 0.3289 0.2584 0.3475 0.3114 0.3416 0.3533 0.3575 0.2988
Soybean 0.6294 0.6814 0.6170 0.6291 0.6120 0.5835 0.7004 0.7265 0.7180 0.7267
Vehicle 0.1248 0.0976 0.0958 0.1101 0.0779 0.0667 0.0726 0.1352 0.1019 0.1106
Image 0.4800 0.4678 0.4740 0.3256 0.4434 0.4548 0.3410 0.3678 0.3678 0.3582

Table 3.2: NMI comparison of LOP-L1 graph and other three graph construc-
tion methods.

Name Gaussian graph kNN graph L1 graph LOP-L1 graph
σ = 0.1 σ = 0.5 σ = 1.0 t = 2 t = 3 t = 4 t = 2 t = 3 t = 4

Iris 0.9600 0.7267 0.8600 0.7533 0.6670 0.5800 0.8867 0.6400 0.9933 0.9000
BT 0.5472 0.4906 0.5189 0.4717 0.6038 0.5283 0.4434 0.4623 0.5472 0.5472
Wine 0.6292 0.8876 0.8820 0.8483 0.9101 0.9101 0.8652 0.9551 0.9607 0.9607
Glass 0.4112 0.3972 0.4299 0.4299 0.5000 0.4860 0.4579 0.4673 0.4907 0.4299
Soybean 0.5081 0.5668 0.4300 0.5049 0.4853 0.5016 0.5244 0.5700 0.5668 0.6059
Vehicle 0.3818 0.3582 0.3605 0.3806 0.3475 0.3381 0.3771 0.3936 0.3593 0.3676
Image 0.5467 0.5124 0.5076 0.4600 0.4838 0.4781 0.3952 0.3919 0.3919 0.3881

Table 3.3: Accuracy comparison of LOP-L1 graph and other three graph con-
struction methods.

Name Metric L1 kNN Graph SA-L1 graph
K:10% K:20% K:30% K:10% K:20% K:30%

Iris
NMI 0.3615 0.4765 0.3883 0.4200 0.4287 0.6103 0.5827
AC 0.6900 0.5133 0.6800 0.6933 0.7133 0.8067 0.6800

BT
NMI 0.4055 0.4839 0.4749 0.5178 0.5436 0.5524 0.4702
AC 0.5283 0.5189 0.5189 0.5377 0.6604 0.6321 0.5755

Wine
NMI 0.7717 0.8897 0.8897 0.8897 0.9209 0.8946 0.8043
AC 0.9326 0.9719 0.9719 0.9717 0.9775 0.9663 0.9382

Glass
NMI 0.3794 0.3642 0.3763 0.2572 0.3746 0.3998 0.3715
AC 0.4486 0.5140 0.5187 0.4439 0.4486 0.4579 0.4533

Soybean
NMI 0.6531 0.6509 0.7022 0.6884 0.6858 0.7096 0.7192
AC 0.4984 0.4625 0.5505 0.5212 0.5179 0.5179 0.5505

Vehicle
NMI 0.1424 0.0802 0.0806 0.0814 0.1173 0.1127 0.1651
AC 0.3747 0.3664 0.3676 0.3582 0.3818 0.3818 0.3830

Image
NMI 0.5658 0.5514 0.5454 0.5699 0.5034 0.5877 0.5694
AC 0.6271 0.4752 0.5286 0.5505 0.5443 0.6467 0.6133

Table 3.4: Clustering performance of SA-L1 graph construction algorithms.
L1 graph is the baseline.
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3.6 Chapter Summary

Classic L1 graph exhibits good performance in many data mining applications.
However, due to the over-complete basis and the following lack of coding focus,
the locality and the similarity among the samples to be encoded are lost. To
preserve locality, sparsity and good performance in a concise and efficient way,
we propose a Locality-Preserving L1 graph (LOP-L1). By limiting the coding
process in a local neighborhood to preserve localization and coding stability,
our proposed LOP-L1 alleviates the instability of sparse codes and outperforms
the existing works.

LOP-L1 graph use the Euclidean distance to search the dictionary for each
datum. As a result, the manifold structure hidden behind the input data is
ignored. To exploit the geometry structure of data, we propose the structure
aware (SA) L1 graph by using manifold ranking technique.

We apply our proposed methods on clustering application and the experi-
ment result confirm the effectiveness of our proposed method.
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Chapter 4

Greedy Sparse Graph by Using
Ranked Dictionary

In this chapter, we propose a greedy algorithm to speed up the construction of
`1 norm based sparse graph. Moreover, we introduce the concept of ”Ranked
Dictionary” for `1 minimization. This ranked dictionary not only preserves the
locality but also removes the randomness of neighborhood selection during
the process of graph construction. To demonstrate the effectiveness of our
proposed algorithm, we present our experimental results on several commonly-
used datasets using two different ranking strategies: one is based on Euclidean
distance, and another is based on diffusion distance.

4.1 Chapter Introduction

As mentioned before, L1 graph has several disadvantages when apply to general
dataset without the assumption of subspace structure. Motivated by these
limitations, many research works have been proposed in machine learning and
data mining research area. Without lost of generality, we would like to classify
those algorithms into two categories: soft-modification and hard-modification.

1. Soft-modification algorithms. Algorithms in this category usually add
one or more regularization terms to the original L1 minimization objec-
tive function in Eq. (1.1). For example, the structure sparsity [1] pre-
serves the local structure information of input data, the auto-grouped
sparse regularization [2] adds the group effect to the final graph, and the
Graph Laplacian regularization [59] [3] lets the closed data samples have
similar sparse coding coefficients (or αi).

2. Hard-modification algorithms. These algorithms define a new dictionary

28



for each data sample during L1 minimization. By reducing the solvers’
solution space for each data sample into a local space, the locality of
input data is preserved and the computational time of L1 minimization
(Eq. (1.1)) is reduced. For example, the locality preserved (LOP) L1

graph described in Section 3.3 is utilizing k-nearest neighbors as dictio-
naries.

Figure 4.1: Connection of Greedy L1 graph to other graphs. Several of them
are: kNN-fused Lasso graph [1], Group Sparse (GS) L1 graph, Kernelized
Group Sparse (KGS) L1 graph [2], Laplacian Regularized (LR) L1 graph [3]
and Locality Preserving (LOP) L1 graph [4].

The soft-modification algorithms preserve the nonparametric feature and
improve the quality of L1 graph by exploiting the intrinsic data information
such as geometry structure, group effects, etc. However, those algorithms still
have high computational cost. This is unpleasant for the large-scale dataset in
this ”Big-data” era. To improve, in this chapter we propose a greedy algorithm
to generate L1 graph. The generated graphs are called Greedy-L1 graphs.
Our algorithm employs greedy L1 minimization solvers and is based on non-
negative orthogonal matching pursuit (NNOMP). Furthermore, we use ranked
dictionaries with reduced size K which is a user-specified parameter. We
provide the freedom to the user to determine the ranking strategy such as
nearest neighbors, or diffusion ranking [60]. Our algorithm has significant time-
reduction about generating L1 graphs. Comparing to the original L1 graph
construction method, our algorithm loses the nonparametric characteristics
and is only offering a sub-optimal solution comparing to solutions that use non-
greedy solvers and deliver global optimal solution. However, our experimental
results show that the graph generated by our algorithm has equal (or even
better) performance as the original L1 graph by setting K equals to the length
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of data sample. Our work is a natural extension of existing L1 graph research.
A concise summary of the connection between our proposed Greedy-L1 graph
and other graphs is illustrated in Figure 4.1.
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Figure 4.2: L1 graphs generated by different construction algorithms. From
left to right: 2D toy dataset; L1 graph; Greedy-L1 graph with Euclidean metric
(K=15); Greedy-L1 graph with Diffusion metric (K=15).

The organization of this chapter is as follows. First, the unstable solutions
caused by different L1 solvers will be presented in Section 4.2. Second, we will
introduce our proposed greedy algorithm in Section 4.3. After that, we will give
a review of existing works on how to improve the quality of L1 graph. Finally,
we will present our experimental results in Section 4.4 and draw conclusion in
Section 4.5.
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4.2 Unstable Solutions caused by Different L1

Solvers

To solve the optimization problem (2.3), we need a numerical solver. There
are many popular ones with various minimization methods [61] such as gra-
dient projection, homotopy and proximal gradient. Moreover, all these solvers
have their own special parameter settings. As a result, if we choose different
parameters, the numerical results will be not same. Also, several To illustrate
this phenomenon, we exam the UCI Image dataset with “spams-matlab” soft-
ware [62] and “l1 ls” software [37]. For each solver, we set the parameter λ
to different values as: [0.01, 0.001, 0.0001]. For the experiment, we select the
first sample of Image dataset as source sample, and others as dictionary. To
see the unstable solutions, we list the top five neighbors (Index) and its corre-
sponding weights (Value). The result is show in below table: As we can see,

Solver λ Index(Value)
L1-ls 0.01 5(0.2111),14(0.4449),17(0.2718),38(0.0418),575(0.0163)
Spams-matlab 0.01 5(0.2632),13(0.0044),14(0.3525),17(0.2819)
L1-ls 0.001 5(0.0771),14(0.4540),17(0.3005),38(0.0715),575(0.0908)
Spams-matlab 0.001 5(0.2851),14(0.3676),17(0.3142),38(0.0043)
L1-ls 0.0001 14(0.3861),17(0.4051),32(0.0292),36(0.0211),575(0.1413)
Spams-matlab 0.0001 5(0.2621),14(0.4171),17(0.2744),38(0.0346),225(0.0068)

Table 4.1: The effect of unstable solutions caused by using different solvers or
with different parameters.

.

the majority neighbors between “spams-matlab” and “l1 ls” are same except
some minor difference. However, the weights are very different and unstable.
This unstable situation is not only with different parameter λ, but also with
different solvers. This is a disadvantage for using L1 graph as similarity graph
for graph oriented machine learning tasks.

4.3 Algorithm

In this section, we introduce the concept of ranked dictionary and two different
ranking strategies: Euclidean distance ranking and Diffusion ranking. These
different ranking methods are proposed for different type of data. For example,
Diffusion ranking is suitable for data with manifold structure,and Euclidean
distance is the popular choice for general data. Obviously, there are many
other distance choices such as cosine distance could be used for ranking, and
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it’s upon user’s judgment for the right choice. Furthermore, we present a
greedy algorithm at the end of this section.

4.3.1 Ranked Dictionary

We propose a “ranked dictionary” to substitute the original dictionary Φi in
equation (1.1). Our claim it that the “ranked dictionary” not only preserves
the locality of data, which is important for clustering applications, but also
solve the “curse of dictionary normalization” dilemma. The idea of “ranked
dictionary” is to rank the neighborhood information following a given distance
metric such as Euclidean distance in vector space. By selecting the top K near-
est neighbors as dictionary, the new dictionary Φi

K keeps the order of nearest
neighbors and captures the local distribution of data samples. Moreover, Φi

K

has smaller size comparing to n − 1 while n equals to the number of data
samples.

There is a subtle difference between k value of popular k-nearest neighbor
(kNN) graph and the K value in our proposed “ranked dictionary” Φi

K . Usu-
ally, the users set the value k of kNN graph in the order of log(n) which is
the asymptotic connectivity result [63] that makes the kNN graph to be con-
nected. For K value of Φi

K , it needs to be larger than d which is the dimension
of vector xi. This requirement is to increase the feasibility of finding successful
sparse linear representation (or signal recover).

The using of truncated version of dictionary Φ is proved to success in
building quality L1 graph for clustering application [4]. However, it can not
solve the dilemma that there might exist data samples with the same direction
but different length in input data. The dictionary normalization process will
project them onto to the same location at hypersphere. Since they have the
same values, the L1 minimization solver will choose one of them randomly.
To avoid this randomness, we need to rank those atoms (or data samples) of
dictionary.

Euclidean Distance Ranking. Using Euclidean metric to rank atoms of
dictionary is quite straightforward. We rank them by distance. The shorter
distance will have a higher rank score. The Euclidean distance is defined as:

dist(xi,xj) = ‖xi − xj‖2 = (
n∑
k=1

|xi(k)− xj(k)|2)1/2. (4.1)

Diffusion Distance Ranking. As pointed out by Yang et al. [3], many real-
world datasets are similar to an intrinsic low dimensional manifold embedded
in high dimensional ambient space, and the geometry structure of manifold can
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Figure 4.3: Ranked dictionary. Left: eight data samples have the same di-
rection but with different length. Red cross is the target data sample for
calculating sparse coefficients. Right: after normalization, those eight data
samples have the same location.

be used to improve the performance of learning algorithms. we now present a
strategy to search dictionaries following the geometry structure of input data.
Based on the diffusion theory [60] [64], we rank the atoms of dictionary through
diffusion matrix. A diffusion process has three stages [64]: (1) initialization;
(2) definition of transition matrix; (3) definition of the diffusion process. In
our setting, the first stage is to build an affinity matrix A from the input
dataset X. We use Gaussian kernel to define the pairwise distance:

A(i, j) = exp

(
−‖xi − xj‖

2

2σ2

)
, (4.2)

where A(i, j) is the distance between data sample xi and data sample xj , and
σ is a normalization parameter. In our configuration, we use the median of
K nearest neighbors to tune σ. The second stage is to define the transition
matrix P :

P = D−1A, (4.3)

where D is a n× n degree matrix defined as

D(i, j) =

{ ∑n
j=1A(i, j) if i = j,

0 otherwise.
(4.4)

Now the diffusion process can be defined as:

W t+1 = PW tP
′
, (4.5)
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where W 0 = A and t is the number of steps for diffusion steps. Each row of
W t is the diffusion ranking scores. In this paper, we let t equal to K for the
sake of simplicity. Once W t is calculated, the first K data samples with top
scores of each row is selected as dictionary. The algorithmic details can be
documented as follows:

Algorithm 5: DiffusionDictionary

Input : Data samples X = [x1, x2, · · · , xn], where xi ∈X;
Size of dictionary: K;

Output: Diffusion dictionary index matrix ΦK .

1 Calculate Gaussian similarity graph A;

2 P = D−1A;
/* calculate diffusion process iteratively. */

3 for t = 1 : K do

4 W t = PW t−1P
′

5 end
/* sort each row in descend order. */

6 for i = 1 : n do
7 sort(W t(i, :))
8 end
/* fetch the index of highest K values in each row of Wt

*/

9 for i = 1 : n do
10 Φ(i, :) =index(W t(i, 1 : k))
11 end

4.3.2 Greedy L1 Graph

To solving the L1 norm minimization problem, we need an efficient solver [61].
For datasets that size are larger than 3, 000 with reasonable dimensions, greedy
solver like Basic pursuit(BP) [36] [24] or Orthogonal Matching Pursuit(OMP) [65]
is more suitable [66]. In this section, We propose a greedy algorithm to build L1

graph. Our proposed algorithm is based on OMP [66] and NNOMP [67] [68].
By using greedy solver, we switch the L1 minimization problem (P1) back to
the original L0 optimization with(P2)/without(P3) non-negative constraints
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as:

(P2) min
αi

‖αi‖0 subject to xi = Φiαi,αi ≥ 0. (4.6)

(P3) min
αi

‖αi‖0 subject to xi = Φiαi. (4.7)

The main difference between our algorithm and the original OMP and
NNOMP is that the atoms of dictionary are ranked. We force the solver to
choose and assign weights to atoms that are closer to source data sample
before normalization. To clarify our idea, we present the improved version of
NNOMP solver in Algorithm (6). For OMP solver, the idea and process are
same.

4.3.3 Connection to Subspace Clustering

L1 graph is almost the same as the similarity graph of sparse subspace cluster-
ing (SSC) algorithm [25]. However, they have different assumptions about the
data. The L1 graph is defined for general data and doesn’t have any specific as-
sumption about data like k-nearest neighbor graph, while the similarity graph
of SSC assumes the data is lied in a union of low-dimensional subspaces [25].

The success of L1 graph is first applied to human face images cluster-
ing [26] [52]. Those face images data has two sufficient conditions for the
success of using L1 graph for spectral clustering: (1) the dimension of data
vector is high. (2) different human face images stay in different subspaces.
However, for general data, these two conditions are not always exist. By the
experiment results from research work [4], the Ng, Jordan, Weiss and et al.
(NJW) spectral clustering algorithm [69] with Gaussian similarity graph has
better performance than with L1 graph on several general datasets. So here,
we argue that the power of L1 graph follows the assumption of sparse subspace
clustering.

4.3.4 Connection to Locally Linear Embedding

The idea of “ranked dictionary” has a connection to Locally Linear Embed-
ding(LLE) [70]. LLE solves the following minimization problem:

ε(w) =
∑
i

|xi −
∑
j

wijxj|2. (4.8)

The cost function ε(w) is the add up of the squared distance between all data
samples (xi) and their reconstructions

∑
j wijxj. There are two constraints

35



Algorithm 6: GreedyL1Graph.

Input : Data sample x;
Ranked dictionary ΦK ;
Residual threshold θthreshold

Output: Sparse coding α of x.

1 for i = 1 : ‖x‖1 do
2 if i == 0 then
3 Temporary solution: αi = 0;
4 Temporary residual: ri = x−ΦKα

i;

5 Temporary solution support: Si = Support{αi} = ∅;
6 else
7 for j = 1 : k do

/* φj is the j-th atom of ΦK */

8 ε(j) = minαj≥0 ‖φjαj − ri−1‖2
2 = ‖ri−1‖2

2 −max{φTj ri−1, 0}2.

9 end
10 Find j0 such that ∀j ∈ Sc, ε(j0) ≤ ε(j), if there are multiple j0

atoms, choose the one with smallest index value.;

11 Update support: Si = Si−1 ∪ {j0};
12 Update solution: αi = minz ‖ΦKα− x‖2

2 subject to
Support{αi} = Si and αi ≥ 0;

13 Update residual: ri = x−ΦKα
i;

14 if ‖ri‖2
2 < θthreshold then

15 Break;
16 end

17 end

18 end
19 Return αi;

during the minimization process: (1) the xj are selected to be k nearest neigh-
bor of of xi, where k is a parameter set by user; (2) the row of weight matrix
sum to one:

∑
j wij = 1.

If we compare the equation 4.8 of LLE with equation 1.1 of L1 graph and
“ranked dictionary”, we can find that both of them are finding a linear repre-
sentation relationship between a given data sample and its k nearest neighbors.
However, L1 graph with “ranked dictionary” looks for a sparse reconstruction
weights, and prefer to assign non-zero weights for nearest neighbors xj that
stay in the same subspace as the given data sample xi. The second difference
is the unique advantage of L1 graph.
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4.3.5 Spectral Clustering Performance

One major application of L1 graph is spectral clustering. Researchers use L1

graph as the similarity graph of spectral clustering algorithm by treating the
sparse coefficients as similarity values. The similarity graph models the cluster
structure of original data with pre-defined similarity metric, and has significant
impact to the performance of spectral clustering algorithm. A good similarity
graph should have high weights for edges within same cluster and low weights
for edges between different clusters. However, there is no explicit measurement
of the quality of similarity graph from theoretical research as point out by [8].
Instead, the clustering performance, like Mutual Information and Accuracy, is
used to tell whether the similarity graph is in high quality or not implicitly.
“Locality” is another guidance to judge the quality of similarity graph [32].
“Locality” stresses that the edges of similarity graph should connect data
points locally as non-local edges will affect the result of graph cut [43] then
the performance of spectral clustering [8]. In this section, we try to explain
how L1 graph with “ranked dictionary” can generate high quality similarity
graphs.

“Ranked dictionary” preserves the locality of data by only selecting k near-
est neighbors as dictionary. For a given source data point, “ranked dictionary”
constrains the possible candidates that it can connect to. There is a difference
between k nearest neighbor of kNN graph and our proposed Greedy L1 graph.
We show it in the Figure (4.4).

As we can see, Greedy L1 graph selects a larger range than kNN graph
but a much smaller one than original L1 graph. It preserves the locality of
data in a “Hard-modification” way as we introduced in the beginning of this
work. And this locality preserving ability has been proved in previous research
work [71].

Another important aspect of Greedy L1 graph is that it preserves the local
subspaces through OMP solver. As the theory proof in [66], if coherence
between the residual vectors (set of ri in line 13 of algorithm (6)) and subspaces
satisfies a data dependent condition, the OMP solver preserves the subspaces of
input data. Based on this, we observe another difference with kNN graph: the
Greedy L1 graph prefers to create connections between data samples within
same subspace, while the kNN graph selects edges according to the given
distance metric.
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Figure 4.4: The range difference of “Ranked Dictionary”(RD), “kNN” and
original “L1 graph”. The toy dataset include two subspace S1 and S2. The
selection range of nearest neighbors is shown by dash circles.

4.4 Experiments

We present our experimental results in this section. The datasets in our ex-
periments can be divided into small size data and large size data. The reason
for this separation is that calculating the global optimization for L1 minimiza-
tion is time-consuming for large size data (number of instances are larger than
3000.) For those large size data, we use an efficient OMP solver from “spams-
matlab” [62]. As a consequence, the generated L1 graphs are not from optimal
sparse coding solutions.

The effectiveness of our proposed graph construction methods is evaluated
through NJW spectral clustering algorithm [69]. To satisfy the input of spec-
tral clustering algorithm, we transform the adjacency matrix of L1 graph W
into a symmetry matrix W

′
by W

′
= (W +W T )/2. All analyses and exper-

iments are carried out by using Matlab on a server with Intel 12-core 3.4GHz
CPU and 64GB RAM.

Solvers. We use three solvers in our experiments. For small size dataset,
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“l1-ls” is used for creating L1 graph, and our proposed NNOMP solver is used
for Greedy L1 graph. For large dataset, we use “spams-matlab” software [62],
which is an efficient implementation of sparse optimization by using multi-
thread techniques, to build the L1 graph and Greedy L1 graph.

Evaluation Metrics. We evaluate the spectral clustering performance with
Normalized Mutual Information (NMI) and Accuracy (ACC). NMI value ranges
from 0 to 1, with higher values meaning better clustering performance. AC is
another metric to evaluate the clustering performance by measuring the frac-
tion of its clustering result that are correct. It’s value also ranges from 0 to 1,
and the higher the better.

4.4.1 Small-sized Data

Datasets. To demonstrate the performance of our proposed algorithm, we
evaluate it on seven UCI benchmark datasets including three biological data
sets (BreastTissue, Iris, Soybean), two vision image data sets (Vehicle, Im-
age), one chemistry data set (Wine), and one physical data set (Glass), whose
statistics are summarized in Table 4.2. All of these data sets have been pop-
ularly used in spectral clustering analysis research. The diverse combinations
of data sets are necessary for our comprehensive studies.

Name #samples #attributes #clusters
BreastTissue (BT) 106 9 6
Iris 150 4 3
Wine 178 13 3
Glass 214 9 6
Soybean 307 35 19
Vehicle 846 18 4
Image 2100 19 7

Table 4.2: Statistics of small-sized datasets.

Baselines and Parameters Setting. We compare the spectral clustering
performance with Gaussian similarity graph and original L1 graph. For ex-
periments with small size datasets, we use the l1 ls solver [54] for original L1

graph construction algorithms. We set the solver’s parameter λ to 0.1. The
threshold θthreshold of Greedy solver 6 is set to 1e − 5. For Gaussian graph
and Greedy-L1 graph, we select three different K values and document their
clustering performance results respectively. The K is set to be the multiple of
data attribute size. The results are documented in Table 4.3 and Table 4.4.

39



Name L1 graph Gaussian graph
Greedy-L1 graph (Euclidean) Greedy-L1 graph (Diffusion)
K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M

BT 0.4582 0.4606 0.5473 0.4517 0.5024 0.4197 0.4073 0.3839
Iris 0.5943 0.7364 0.3950 0.4623 0.4070 0.5106 0.4626 0.4640
Wine 0.7717 0.8002 0.8943 0.9072 0.8566 0.6925 0.4291 0.6093
Glass 0.3581 0.2997 0.2569 0.3688 0.3039 0.2991 0.3056 0.2918
Soybean 0.7373 0.6958 0.6919 0.6833 0.6775 0.5788 0.5493 0.5432
Vehicle 0.1044 0.1870 0.1512 0.2121 0.2067 0.1438 0.1035 0.1244
Image 0.4969 0.4652 0.5821 0.6673 0.6649 0.4866 0.4483 0.3155

Average 0.5030 0.5207 0.5170 0.5361 0.5170 0.4473 0.3865 0.3903

Table 4.3: NMI comparison of graph construction algorithms. M is the number
of attributes.
Name L1 graph Gaussian graph

Greedy-L1 graph (Euclidean) Greedy-L1 graph (Diffusion)
K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M

BT 0.5472 0.5377 0.6698 0.4811 0.5943 0.4528 0.4906 0.4717
Iris 0.7400 0.8867 0.6933 0.7200 0.6800 0.7200 0.6533 0.6400
Wine 0.9326 0.9438 0.9719 0.9719 0.9551 0.8989 0.7865 0.8596
Glass 0.4206 0.4112 0.4579 0.4533 0.4346 0.4626 0.4813 0.5187
Soybean 0.6156 0.5440 0.5244 0.4853 0.5016 0.4430 0.3746 0.4876
Vehicle 0.3713 0.4515 0.4539 0.4243 0.4090 0.3664 0.3522 0.3605
Image 0.5629 0.4595 0.6348 0.7181 0.7043 0.5190 0.5524 0.3505

Average 0.6105 0.6049 0.6227 0.6288 0.6141 0.5683 0.5334 0.5362

Table 4.4: ACC comparison of different graph construction algorithms. M is
the number of attributes.
Name L1 graph Gaussian graph

Greedy-L1 graph (Euclidean) Greedy-L1 graph (Diffusion)
K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M

BT 0.0604 1 0.0457 0.0615 0.0705 0.0341 0.0442 0.0548
Iris 0.0403 1 0.0217 0.0288 0.0311 0.0203 0.0237 0.0265
Wine 0.0600 1 0.0413 0.0496 0.0552 0.0347 0.0409 0.0437
Glass 0.0369 1 0.0242 0.0308 0.0349 0.0188 0.0204 0.0239
Soybean 0.030 1 0.0286 0.0317 0.0346 0.0258 0.0299 0.034
Vehicle 0.0135 1 0.0104 0.0124 0.0135 0.0062 0.0074 0.0084
Image 0.0039 1 0.0034 0.004 0.0044 0.0026 0.0029 0.0027

Table 4.5: Graph sparsity comparison of different graph construction algo-
rithms. M is the number of attributes.

Greedy-L1 Graph vs. Gaussian Graph. Overall, the Greedy-L1 graph us-
ing Euclidean metric has better average spectral clustering performance than
Gaussian graphs. However, we also observer that Guassian graph has overall
better performance on “Iris”, “Soybean” and “Vehicle” datasets.

Greedy-L1 Graph vs. L1 Graph. Greedy-L1 graph has better clustering
performance than L1 graph on average. However, for iris and soybean datasets,
the L1 graph shows the best clustering result: Iris (NMI=0.5943, ACC=0.74);
Soybean (NMI=0.7373, ACC=0.6156). The best result of Greedy-L1 graph
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Figure 4.5: Running time of different L1 graph construction algorithms. Top:
original L1 graph construction algorithm. Bottom: the construction of L1

graph using greedy solver.

are: Iris (NMI=0.5106, ACC=0.72); Soybean (NMI=0.6919, ACC=0.5244).

Euclidean Distance Ranking vs. Diffusion Ranking. The Euclidean
distance ranking appears to have better clustering performance than that of
diffusion ranking in general. This is rather a surprising result to us. Only for
“Iris” dataset, the result of diffusion ranking is better than that of Euclidean
distance ranking.

Running Time. We report the running time of generating L1 graphs using
different construction algorithms. As we can see from Fig. 4.5, the Greedy-L1

graphs have consumed significantly less construction time than that in original
L1 graphs.

Graph Sparsity. We check the sparsity of graphs by calculating the edge
density:

Sparsity(G) =
|E|

|V | ∗ (|V | − 1)
. (4.9)

The results are reported in Table 4.5. We can see that Greedy-L1 graphs with
diffusion distance ranking are more sparse than that with Euclidean distance
ranking.

4.4.2 Large-sized Data and Multiple Classes Data

In this section, we present the experiment results of three large datasets. To
keep the integrity of our experiments, two multiple classes data are also ex-
amined.

41



Name #samples #attributes #clusters
ISOLET 1560 617 25
YaleB 2414 1024 38
MNIST4K 4000 784 9
COIL100 7200 1024 100
USPS 9298 256 10

Table 4.6: The statistics of three large datasets and two multiple classes
datasets.

Datasets. We select following datasets for our experiments. Three large size
datasets are: first 2k testing images of MNIST (MNIST4K), COIL 100 objects
database (COIL100) and USPS handwritten digit database (USPS). Two mul-
tiple classes datasets are: isolet spoken letter recognition dataset (ISOLET),
extended Yale face database B (YaleB). The statistics of selected datasets can
be described by Table (4.6).

Spectral Clustering Performance. The spectral clustering performance
shows in Table (4.8). As we can see, Gaussian graphs have overall better
performance than different L1 graphs. For the performance between original
L1 graph (with OMP greedy solver) and Greedy L1 graphs, the greedy version
is better.

Graph Sparsity. We also check the sparsity of different similarity graphs.
The result in Table (4.9) shows that Greedy L1 graphs with diffusion ranking
are more denser than other L1 graphs. And the ordinary L1 graph (OMP) has
the lowest sparsity.

It is known that the sparsity of graph will affect the performance of graph
cut and then to spectral clustering. And the spectral clustering performance
will drop if the sparsity is lower than a threshold [72]. Since L1 graph is a
sparse graph in nature, we want to know the correlation between the spar-
sity and clustering performance. To evaluating this, we choose the “USPS”
dataset, and generating graphs with different sparsity by setting the recon-
struction approximation error bound to different thresholds. They are: [0.1,
0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001]. For the size of
“ranked dictionary”, we choose size to 2M which is 512. The trend of spectral
clustering performance with different sparsity can be show as the left subplot
of Figure (4.6). We can see that when the sparsity value lower than 0.0072
, the spectral clustering performance drop catastrophically. The relationship
between the approximation error and the graph sparsity is presented at the
right side of Figure (4.6). By reading from the curve, we know that the ap-
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Name L1 (OMP) Gaussian
Greedy-L1 graph (Euclidean) Greedy-L1 graph (Diffusion)
K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M

ISOLET 0.2571 0.7821 0.5501 0.4202 NA 0.1903 0.2993 NA
YaleB 0.2349 0.4219 0.2493 0.2895 NA 0.2003 0.4408 NA
MNIST4K 0.2503 0.4426 0.2679 0.1850 0.2438 0.0737 0.0333 0.0575
COIL100 0.3556 0.7726 0.7072 0.6533 0.6283 0.4044 0.4166 0.4788
USPS 0.1585 0.6580 0.6608 0.6571 0.6488 0.0360 0.0621 0.0399

Average 0.2513 0.5457 0.4713 0.4462 0.5070 0.1809 0.2504 0.1921

Table 4.7: NMI results of spectral clustering with different similarity graphs.
M is the number of attributes.
NAME L1 (OMP) Gaussian

Greedy-L1 graph (Euclidean) Greedy-L1 graph (Diffusion)
K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M

ISOLET 0.2038 0.6974 0.4205 0.3327 NA 0.1705 0.2558 NA
YaleB 0.1533 0.2618 0.2067 0.2606 NA 0.1831 0.4321 NA
MNIST4K 0.2787 0.5302 0.3900 0.2755 0.3538 0.1847 0.1685 0.1845
COIL100 0.1192 0.5201 0.4746 0.4368 0.4012 0.2381 0.2326 0.2778
USPS 0.2122 0.7018 0.6723 0.6740 0.6950 0.1590 0.1778 0.1663

Average 0.1934 0.5423 0.4328 0.3959 0.4833 0.1871 0.2534 0.2095

Table 4.8: ACC results of spectral clustering with different similarity graphs.
M is the number of attributes.
Name L1 (OMP) Gaussian

Greedy-L1 graph (Euclidean) Greedy-L1 graph (Diffusion)
K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M

ISOLET 0.0010 1 0.3304 0.2679 NA 0.4288 0.2804 NA
YaleB 0.0019 1 0.1968 0.1713 NA 0.3797 0.1952 NA
MNIST4K 0.0043 1 0.1022 0.0954 0.0929 0.1470 0.1267 0.1076
COIL100 0.0002 1 0.0786 0.0620 0.0574 0.1887 0.1198 0.0929
USPS 0.0003 1 0.0076 0.0072 0.0071 0.0246 0.0225 0.0214

Table 4.9: Graph sparsity results of different similarity graphs. M is the
number of attributes.
Name L1 (OMP) Gaussian

Greedy-L1 graph (Euclidean) Greedy-L1 graph (Diffusion)
K=1*M K=2*M K=3*M K=1*M K=2*M K=3*M

ISOLET 243.9 1.1 202.5 310.6 NA 263.0 327.7 NA
YaleB 836.1 4.3 758.7 1187.6 NA 1097.9 1197.7 NA
MNIST4K 1435.8 9.8 814.8 1048.5 1341.9 848.9 1158.4 1412.7
COIL100 5541.3 36.1 2379.7 3225.0 5447.8 4108.5 5091.8 7475.3
USPS 2499.5 16.4 93.2 123.1 174.1 221.1 259.5 323.1

Table 4.10: Running time of different similarity graphs. M is the number of
attributes.

proximation error and sparsity has a negative relationship. To maintain the
Greedy L1 as dense as possible, we need to set a lower bound of approximation
error.

Running time. We also record the running time of building different simi-
larity graphs. From table (4.10), we see that the running time increase while
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Figure 4.6: The impact of graph sparsity to spectral clustering performance.
Left: graph sparsity vs. NMI and ACC. Right: L1 solver approximation error
vs. graph sparsity.

the data size becomes larger. However, the “USPS” has lesser running time
than “COIL100” even its data size is bigger. The reason is that “USPS” has
smaller number of features than “COIL100” and this cause the L1 solver to
need more computation time for finding sparse solutions.

4.5 Chapter Summary

In this chapter, we have designed a greedy algorithm to construct L1 graph.
Moreover, we introduced the concept of “ranked dictionary”, whcih not only
preserves the locality but also solve the curse of normalization. Moreover, it
can construct L1 graph efficiently for large size data (#instances ≥ 3000.)
Except for the Euclidean metric and diffusion metric that have been discussed
in this paper, the user can choose other ranking methods such as manifold
ranking that could be more appropriate for specific dataset in real applications.
Our greedy algorithm can generate sparse L1 graph faster than the original L1

graph construction algorithm, and the resulting graphs have better clustering
performance on average than original L1 graph. Nevertheless, our algorithm
could be generalized in a straightforward way by introducing regularization
terms such as elastic net into the current solver, which would indicate the
quality of generated L1 graphs could be further improved.
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Chapter 5

Dense Subgraph based
Multi-source Data Integration

In this chapter, we propose a multi-source data integration framework based
on dense subgraph mining techniques. It is applied to integrate Microarray
experiment data from different sources in computational biology research area.
The goal is to solve the so-called “batch effect” between different experiments.
Ratio-based algorithms are proven to be effective methods for removing batch
effects that exist among microarray expression data from different data sources.
They are outperforming than other methods in the enhancement of cross-batch
prediction, especially for cancer data sets. However, their overall power is
limited by: (1) Not every batch has control sample. The original method uses
all negative samples to calculate subtrahend. (2) Microarray experimental data
may not have clear labels, especially in the prediction application, the labels
of test data set are unknown. In this chapter, we propose an Improved Ratio-
Based (IRB) method to relieve these two constraints for cross-batch prediction
applications. For each batch in a single study, we select one reference sample
based on the idea of aligning probability density functions (pdfs) of each gene
in different batches. Moreover, for data sets without label information, we
transfer the problem of finding reference sample to the dense subgraph problem
in graph theory. Our proposed IRB method is straightforward and efficient,
and can be extended for integrating large volume microarray data sets. The
experiments show that our method is stable and has high performance in
tumor/non-tumor prediction.
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5.1 Chapter Introduction

In this digital era, we have been obtaining much more biological experiment
data than before. Consequently, biological scientists have collected and built
many genomic knowledge database by taking the advantage of today’s infor-
mation technology. These large database, for example, NIH GEO [73], inSili-
coDb [74], and ArrayExpress [75], not only share many experiments data from
different independent studies, but also provide computing tools for researchers
to analyze data. The approach of integrative analyzing multiple microarray
gene expression datasets is proved to be a robust way for extracting biological
information from genomic datasets [76]. Comparing with ”meta-analysis” [77]
which combines analysis results from many small-sized independent datasets,
integrative analysis shows higher statistical relevance of results from one inte-
grated large size dataset [78]. Nevertheless, combining or merging microarray
expression data from different data sources suffers from the so-called batch
effects [79] which is still a challenging and difficult problem to be solved in
computational biology nowadays.

Batch effects are different from bias and noise. They are systematical un-
wanted variations existing among batches from different sources [79]. Many
research works have been proposed in past decade to learn their math prop-
erties, and to reduce its impacts in microarray data analysis. Lazar et al. [78]
documented a comprehensive survey about existing batch effect removal meth-
ods. In all those methods, ratio-based methods are proved to have high pre-
diction performance by Luo et al. [80]. Moreover, ratio-based methods have
low computational cost which is demanding for integrating large volume data
sets. However, ratio-based methods require each batch of data to have a group
of reference samples, which could be either control samples or negative (non-
tumor) samples.

GENESHIFT is another batch effect removal method proposed by Lazar et
al. [81]. It is a nonparametric algorithm and assumes that samples in different
batches are from same population, which means they will have same distribu-
tions. By this assumption, GENESHIFT reduces the batch effect by aligning
the pdfs of each gene’s expression values crossing different batches. It has same
expression value model as ratio-based methods. However, It does not have a
clear math operation/definition about how the batch effects are neglected or
removed. In this chapter, we propose an Improved Ratio-based(IRB) method
of batch effect removal by taking the advantages of ratio-besd methods and
GENESHIFT. The main contributions of our works are listed as follows:

• We show that it is better if the pdfs of genes are estimated from negative
(non-tumor) samples instead of all samples for cancer data sets(§ 5.4.3).
• We propose a co-analysis framework (§ 5.4.4) to find reference samples
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Symbol Meaning

Xk X: one batch; k: batch id;

Xk
ij expression value of ith row and jth column;

X̂k
ij expression value after batch effect removal;

bkij batch effect of value at (i, j) in batch k;

εkij noise;

Pi, Qi pdfs of gene i in batch P and Q;

G(V,E) graph G with vertices V and edge set E;

S vertices of subgraph;

e[S] number of edges induced by S;

Table 5.1: Frequent math notations.

for ratio-based algorithms. We define matching score for searching best
reference samples for labeled data samples. We also propose a greedy
algorithm for obtaining the local optimal solution.
• For unlabeled data samples, we transfer the reference samples searching

problem to the dense subgraph problem from graph theory (§ 5.4.4) and
design an searching algorithm based on bipartite graph to solve it.
• We propose an improved ratio-based method (IRB) (§ 5.4.5) by using

one sample in each batch as subtrahend comparing to original method
which use many. We also evaluate the prediction performance over two
real cancer data sets.

In this work, we represent different batch data as Xk, k ∈ {1, · · · , K},
where k is the batch ID. Each batch data has m rows and n columns. The
rows represent genes(feature), and the columns represent samples. More-
over, we assume that all batches have been log-transformed and preprocessed
for background correction, normalization and summarization by using either
MAS5 [82], RMA [83], fRMA [84] or other preprocessing tools.

5.2 Related Works

Batch effect removal. Survey [85], [78] give detail comparison and analysis
about existing batch effect removal algorithms. The most popular ones are(not
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limited to): Batch Mean-Centering(BMC) [86],Gene Standardization [87],Ratio-
based methods [80], Scaling relative to reference dataset [88], Empirical Bayes
method [89], Cross-Platform Normalization(XPN) [90], Distance-Weighted Dis-
crimination [91], singular value decomposition based method [92], surrogate
variable analysis [93],GENESHIFT [81], remove unwanted variation 2-step [94]
and etc. These methods can be separated into two groups: location-scale (LS)
methods and matrix-factorization(MF) methods. LS methods assume a sta-
tistical model for the location (mean) and scale (variance) of the data within
the batches and proceed to adjust the batches in order to agree with these
methods. MF algorithms assume that the variation in the data corresponding
to batch effects is independent to the biological variable of interest and it can
be captured in a small set of factors which can be estimated through some
matrix factorization methods.

Ratio-based methods. Ration-based methods [80] shift the expression
value of each gene based on a set of reference samples in each batch. It is
designed with two versions: Ratio-A and Ratio-G. Ratio-A uses arithmetic
mean value as subtrahend while Ratio-G uses geometric mean value. They
assume that expression value of each gene in reference samples are subjected
to the same amount of batch effect as in the other samples in same batch. Then
the batch effect can be removed by subtracting the mean of those reference
samples. Assuming that there are r reference samples in batch Xk, method
Ratio-A and Ratio-G can be described as:
Ratio-A: Arithmetic mean ratio-based method:

x̂kij = xkij −
1

r

r∑
l=1

xkil (5.1)

Ratio-G: Geometric mean ratio-based method:

x̂kij = xkij − r

√√√√ r∏
l=1

xkil (5.2)

GENESHIFT is a high quality nonparametric method. It first estimates
genewise pdfs for each batch using the Parzen-Rosenblatt density estimation
method [95]. Secondly, it estimates the offset term by finding the best match
between two pdfs. This algorithm processes two batch data at one time. As-
sume Pi and Qi are the pdfs of gene i in studies of batch X and batch Y . The
algorithm put Pi as being fixed, and slides Qi step by step across the range
where Pi is estimated. In each step, the algorithm computes the inner product
between Pi and part of Qi, which lays in the range where the densities are
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estimated as follows:

M(t) = Pi ∗Qi =
d∑
j=1

Pi(j)W
t
Qi(j)

(5.3)

where d is number of sampling ticks of pdf and W t
Qi(j)

is given by:

W t
Qi(j)

=

{
ωQt

i, for Qt
i in window

0, otherwise

with ω = 1 a rectangular window defined on the support of Pi and Qt
i is part

of Qi found in the pdfs estimation range at step t. The best matching between
Pi and Qi is given by max(M) and the offset term is obtained by subtracting
from the initial position of Qi(bref ), the best matching position (bmax(M)) is:

δ = bref − bmax(M)

By setting the reference position to 0, the offset term becomes δ = −bmax(M).
Dense subgraph Dense subgraph extraction is a classic problem in Graph

theory [96]. The algorithms of solving this problem have been applied to
biological networks research [97] [98] [99]. Here, we want to extract a densest
subgraph from defined bipartite graph. We wish the extracted subgraph has
high quality and concise. To archive this goal, we apply the latest technique
described in [100] to extract the optimal quasi-clique which is a high quality
dense subgraph.

Given a graph G(V,E), find a subset of vertices S∗ ⊆ V such that fα(S∗) =
e[S]−α

(|S|
2

)
≤ fα(S) for all S ⊆ V . The resulted set S∗ is called optimal quasi-

clique of G. We use the recommend value α = 1/3 in this chapter.

5.3 Data

We use two real world cancer data sets to validate our proposed algorithms.

Lung cancer dataset The lung cancer dataset consists three data sets hy-
bridized on two different Affymetrix platforms. The first lung cancer data set
(GSE19804) contains 120 samples of tumor and adjacent normal tissue sam-
ples hybridized on Affymetrix HGU133plus2 expression arrays. The second
data set (GSE19188) contains 94 tumor and 62 adjacent normal tissue sam-
ples hybridized on Affymetrix HGU133plus2 expression arrays. The third lung
cancer data set (GSE10072) contains 58 tumor samples and 49 normal tissues
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samples consists of a mix of independent controls and tumor adjacent tissues
hybridized on Affymetrix HGU133A expression array.

Type Name NT T Platform

Train
GSE19804 60 60 GPL570

GSE19188 62 94 GPL570

Test GSE10072 49 58 GPL96

Table 5.2: Lung cancer dataset. NT: non-tumor, T: lung tumor.

Iconix dataset We use the Iconix dataset (GSE24417) from Microarray
Quality Control Phase II(MAQC-II) microarray gene expression data [80].
The Iconix dataset is a toxicogenomic data set provide by Iconix Bioscience
(Mountain View, CA, USA). It aimed at evaluating hepatic tumor induction by
non-genotoxic chemicals after short-time exposure. The training set consists
of 216 samples treated for 5 days with one of 76 structurally and mechanis-
tically diverse non-genotoxic hepatocarcinogens and non-hepatocarcinogens.
The test set consists of 201 samples treated for 5 days with one of 68 struc-
turally and mechanistically diverse non-genotoxic hepatocarcinogens. Gene
expression data were profiled using the GE Codelink microarray platform.
The separation of the training set and the test set was based on the time when
the microarray data were collected, also the different batches. The detail data
set information is listed as follows.

Type Batch NT T Date

Train

B1 17 24 11/6/01-12/10/01

B2 87 17 12/11/01-02/25/02

B3 39 32 3/20/02-7/18/02

Test
B4 91 18 07/22/02-12/4/02

B5 53 39 4/3/03-9/28/04

Table 5.3: Information of the Iconix dataset; NT: non-tumor, T: tumor.
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5.4 Algorithm

In this section, we are presenting the Improved Ratio-based (IRB) method.
Comparing to the original ratio-based method, we solve the problem of find-
ing reference samples. Instead of finding reference samples in each batch sepa-
rately, IRB selects reference samples by taking all batches into consideration at
the same time. The outline of this section is as follows. Firstly, the expression
value model of microarray data sets are defined. Secondly, we define the refer-
ence samples searching problem formally. Thirdly, we describe the assumption
used in our method. In the last, we introduce a co-analysis framework for find-
ing reference samples in labeled and unlabeled data sets separately.

5.4.1 Expression Value Model

In general, batch effect comes with multiplicative and additive form. After
log-transform, these batch effects are both represented as additive terms. We
assume that the expression value of feature i in sample j of batch Xk can be
expressed in the following general form:

xkij = x
′

ij + bk + εkij (5.4)

where x
′
ij is the actual feature value. bk is the batch effect term and εkij repre-

sents noise.
Moreover, we use the same genewise density estimation method as GENESHIFT

algorithm which is Parzen-Rosenblatt density estimation method[95].

5.4.2 Problem Definition

As we mentioned before, we only want to find one reference sample for each
batch. The searching guideline is following the philosophy of GENESHIFT
algorithm: the inner product of each gene’s pdf in different batches are maxi-
mized after integration. Before giving the formal definition of our problem, we
first define the matching score of two batches:

Definition 2. Given two batches that have same number m of genes(or fea-
tures), and with pdf P and pdf Q respectively, the matching score of them is
defined as:

M(P,Q) =
m∑
i=1

< P (i), Q(i) > (5.5)

Now, our problem can be defined formally as:
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Problem 1. Given K batches of microarray expression dataset Xk : m ×
n(k),m genes,n(·) samples,k ∈ {1, · · · , K}, with estimated pdfs:

P = [P 1(x), P 2(x), · · · , PK(x)]

where P k is the vector of pdfs for genes x in batch Xk. P k is a m× 1 vector
where each P k

i , i ∈ {1, · · · ,m} represents the pdf of ithgene.The problem is to
find K offset samples xkoffset within each batch respectively:

xoffset = [x1
offset,x

2
offset, · · · ,xKoffset, ]

such that the total matching score of pdfs after shifting by its offset samples
respectively archives maximum:

maxxoffset

K∑
i=1

K∑
j 6=i,j=1

M(P i(x− xoffset), P j(x− xoffset)) (5.6)

In the above problem, xkoffset is a specific sample in batch k. If we don’t

limit xkoffset to be a specific sample in the batch and let it be a regular offset
vector, the problem 1 can be seen as a generalized version of GENESHIFT
which takes two batches at the same time and shift pdfs of every gene sep-
arately from one batch to another batch. The reason we put this constrain
here is that the batch effect term bk in equation (5.4) can be neglected by
subtracting a sample, and this sample inherits the batch effect term with its
true signal value. The advantage of applying this constrain is that we obtain
a clear math explanation about how the batch effects are removed.

5.4.3 Assumption

In GENESHIFT, the author assumes that the expression of each gene from two
different experiments(batches) can be represented accurately enough through
the expression of that gene across all population if the number of samples in
two microarray Gene Expression(MAGE) experiments is sufficiently high. By
this assumption, a consequence conclusion is that the pdfs of each gene should
be similar in all experiments. However, as we observed from above cancer data
sets, the average similarity among the non-tumor(negative) samples is higher
than the tumor(positive) samples, as show by Figure 5.1. We then argue
that the similarity pdfs assumption of GENESHIFT holds for cancer data sets
only if the pdfs are estimated from non-tumor samples but not from all. This
argument is not only based on the observation but also based on the fact

52



Sample #ID

S
a
m

p
le

 #
ID

GSE19804, Correlation Heat Map

 

 

20 40 60 80 100 120

20

40

60

80

100

120 0.75

0.8

0.85

0.9

0.95

1

Sample #ID

S
a

m
p

le
 #

ID

GSE19188, Correlation Heat Map

 

 

20 40 60 80 100 120 140

20

40

60

80

100

120

140

−0.5

0

0.5

1

7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

GSE19804, Probability Density Function

 

 
All
Tumor
NonTumor

−4 −3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

GSE19188, Probability Density Function

 

 
All
Tumor
NonTumor

non−tumor tumor
0.88

0.9

0.92

0.94

0.96

0.98

1

Samples

C
o
rr

e
la

ti
o
n

GSE19804,MEAN and STD of sample correlation

 

 

non−tumor tumor
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

GSE19188, MEAN and STD of sample correlation

Samples

C
o
rr

e
la

ti
o
n

 

 

Figure 5.1: Left: GSE19804; Right: GSE19188; Top row: correlation (PCC)
heat map, samples are sorted from non-tumor to tumor samples; Middle row:
pdf of a random gene (GeneBank ID:U48705). Bottom row: correlation values
distribution.

that tumors with similar histopathological appearance can follow significantly
different clinical courses [101]. The assumption of IRB now can be described
as following:

Assumption 1. The pdf of a gene have similar distribution in all experiments
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iif the pdf is estimated from non-tumor samples.

5.4.4 Co-analysis Framework

In this section, we propose a co-analysis framework to find the reference sam-
ples both for labeled and unlabeled data samples. For all ratio-based methods,
we need reference samples to calculate the subtrahend. Original ratio-based
methods use average of all negative samples or median of them. As for our
method, we only use one reference sample for each batch. Comparing to the
original ratio-based methods that find reference sample independently, we take
all batches into consideration at the same time. Our co-analysis framework
can be described as following from labeled data sets to unlabeled data sets.

Labeled data sets. For example, the training data sets have clear labels of
samples. To find the reference samples for them, we need to solve the optimiza-
tion problem (1). However, the properties like convexity or non-convexity of
objective function in problem (1) are uncertain. Because (1)the objection func-
tion cumulates all matching scores of genes that show very different pdfs ;(2)the
pdf curve could be either convex or non-convex.

To solve this problem, we propose a greedy algorithm for it. Our algorithm
first select an anchor batch that has the largest number of non-tumor samples
and shift its geometric median to axis origin. Secondly, for rest batches, we
calculate the best offset vector for each of them according to this anchor batch.
In the last step, we search a sample inside each batch that has the smallest
euclidean distance to this offset vector and treat it as the reference sample
that we are looking for. In the first step, we shift the geometric median of
anchor batch to axis origin. The reason is that we want to place the median
of pdfs of all genes around the axis origin as much as possible. However, the
geometric median is not only difficult to compute but also not necessary to be
an experiment sample that inherits batch effect. To solve this dilemma, we
choose the sample that nearest to the geometric median as a substitute. We
call this sample approximate geometric median(GM) sample: GMapprox. and
the definition is as:

GMapprox = arg min
y∈X

∑
xj∈X\y

‖xj − y‖2 (5.7)

where the parameter δ controls the width of neighborhoods. Our greedy algo-
rithm now can be described as Algorithm 7.
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Algorithm 7: FindingReferenceSampleLabeled

input : Microarray experiments data: Xk : m× n, k ∈ {1, · · · , K}
with labels.

output: Reference samples: xoffset = [x1
offset,x

2
offset, · · · ,xKoffset, ].

1 begin
2 Find anchor batch xanchor;
3 Shift xanchor by GMapprox;
4 for batch Xk, k 6= anchor do
5 for each gene gi, i ∈ {1, · · · ,m} do
6 estimates the pdf across batches: pdfki ;
7 calculate the offset term δki ;

8 end
9 find the closest sample x̂koffset to δk;

10 end

11 end

Unlabeled data sets. For these data sets, the tumor/non-tumor labels are
unknown but the batch labels are clear. We estimate the non-tumor samples
of a unlabeled batch by using dense subgraph extraction algorithms. We first
build a bipartite similarity graph between the known non-tumor samples and
all unlabeled samples. The pearson correlation coefficient(PCC) metric, rep-
resented as sim(·), is used. After that, we extract a dense subgraph, called
optimal quasi-clique, from the built graph. The nodes of the resulted sub-
graph that belong to the unlabeled side are treated as non-tumor samples.
The algorithm of building the bipartite graph is described by algorithm 8.

The user-specific value θ will affect the output of our algorithm as the
input is a completed weighted graph. In our experiments, we use the value
that equals to half of the highest similarity value.

We use the GreedyOQC algorithm introduced in [100] to extract the op-
timal quasi-clique. An illustration of the algorithm output is as following:

5.4.5 Improved Ratio-based Method

Once we have reference sample for each batch, it’s straightforward to mod-
ify the original ratio-based method and obtain our proposed IRB method as
following:

x̂kij = xkij − x(i)offset (5.8)

The overall IRB algorithm can be described by algorithm 9.
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Algorithm 8: BuildBipartiteGraph

input : Non-tumor samples: L, unlabeled samples: R, User specified
threshold θ

output: A unweighted undirected bipartite graph G(V,E), where
L,R ⊆ V .

1 begin
2 Calculate the similarity sim(l, r),where l ∈ L, r ∈ R;
3 for each pair (l, r) do
4 if sim(l, r) ≥ θ then
5 add one edge to E for nodes pair (l, r);
6 end

7 end
8 remove the nodes with zero degree;
9 return G(V,E);

10 end

Figure 5.2: Left: Input bipartite graph; Right: extracted optimal quasi-clique;
Blue nodes: known non-tumor samples; Gray nodes: unlabeled samples.

5.5 Validation

In this section, we demonstrate and validate our proposed co-analysis frame-
work by using the Lung cancer dataset. Results of each step are presented
here to better show the details of our proposed algorithm.
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Algorithm 9: IRB

input : labeled data sets: Xk, k ∈ {1, · · · , K} with labels;
unlabeled data set: Y ;

output: data sets with batch effect removed: X̂ l and Ŷ ;
1 begin
2 FindingReferenceSampleLabeled(X), obtain xoffset;

3 Shift all X by xoffset, obtain X̂;
4 BuildBipartiteGraph(X,Y ) and extractoptimal quasi-clique;
5 Estimate the offset of Y ;
6 Find reference sample (y)offset;
7 Shift Y ;

8 end

Figure 5.3: Resulted optimal quasi-clique of Lung cancer dataset.G = (|V | =
35, |E| = 287). The top two rows list the estimated (fake) non-tumor samples
found by GreedyOQC.

For Lung cancer dataset, we have three batches from two different gene
chip platforms. The batch GSE19188 is selected as anchor batch since it has
the largest number of non-tumor samples. The approximate geometric median
sample is GSM475732. The difference of pdf before and after shifting (applying
IRB method) shows as Figure 5.4.

Now we calculate the reference sample for second batch GSE19804 accord-
ing to anchor batch and the changing of pdf is as figure 5.5.

For test data GSE10072, we build the bipartite graph and find the resulted
optimal quasi-clique as figure 5.5. The constructed bipartite graph has 173
nodes and 747 edges. The output optimal quasi-clique shows as figure 5.5
and it has 35 nodes and 287 edges. Among them, 18 nodes are samples of
GSE10072 and the real labels of them are non-tumor samples. The changes
of pdfs of GSE10072 is as figure 5.6.

To check the quality of batch effect removal, we show the correlation heat
map and clustering dehendragraph here. As we can see, the correlation values
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Figure 5.4: Difference of gene U48705 before (left) and after (right) applying
IRB by reference sample GSM475732.
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among different batches are enhanced and more smooth. The correlation heat
map before and after batch effect removal is:

Correlation heat map before batech removal
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Figure 5.7: Correlation heat map of Lung cancer data. Top: original data.
Bottom: after batch effect removal by IRB.

5.6 Experiments

In this section, we examine the prediction performance of our proposed al-
gorithm comparing to original ratio-based methods and GENESHIFT. We
use Support Vector Machine(SVM) algorithm with penalty C = 1, which is
the setting in [80] except that we omit feature selection here. Accuracy and
Matthews correlation coefficient(MCC) are used for our measurements.

The prediction performance of Lung Cancer data is summarized by follow-
ing table: As the results show, GENESHIFT has the best prediction accuracy

Table 5.4: Prediction performance of Lung cancer dataset
Classifier Method Accuracy MCC
SVM(C=1) ratio-G 0.45 0.7829
SVM(C=1) ratio-A 0.9629 0.9813
SVM(C=1) GENESHIFT 0.9723 0.9803
SVM(C=1) IRB 0.9623 0.9813

but ratio-A and IRB have the better MCC scores.
Also, We compare the prediction performance of Iconix data set in table 5.6.

The results show that IRB obtain the best accuracy and MCC scores.
By above two experiment results, we can see that IRB method always has

higher prediction performance than others. This means that IRB is a stable
batch effect removal algorithm.
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Table 5.5: Prediction performance of Iconix dataset
Classifier Method Accuracy MCC
SVM(C=1) ratio-G 0.72 0.1
SVM(C=1) ratio-A 0.71 0.01
SVM(C=1) GENESHIFT 0.68 0.04
SVM(C=1) IRB 0.73 0.15

5.7 Chapter Summary

Batch effect removal has been a challenging research problem in computational
biology while integrating large volume microarray data sets. In the past, we
neither had a clear mathematical description of this problem, nor had an
unique way to evaluate the performance of batch effect removal. In this work,
we have generalized the idea of GENESHIFT, which is the latest batch effect
removal algorithm and a non-parametric method.

Our contribution is tow-fold. First, we have solved the problem of finding
reference samples for ratio-based methods from labeled data sets to unlabeled
sets. The proposed co-analysis framework aligns the density function of non-
tumor samples of each batch as much as possible. Comparing with the orig-
inal ratio-based method which processes the batch effect less adequately, our
framework takes all batches into consideration at the same time. Moreover,
we applied the latest algorithm for dense subgraph problem from graph theory
to solve the problem of finding reference samples for unlabeled data sets. The
motivation of using the graph algorithm is that the non-tumor samples are
much more similar to each other than tumor samples.

Second, our algorithm has the advantage of lowering the computational
cost of both ratio-based method and GENESHIFT method. Comparing with
several other batch effect removal methods, this property is valuable while inte-
grating large volume of microarray datasets. The GreedyOQC has complexity
O
(
|V |+ |E|

)
for graph G(V,E).

In summary, IRB solves the reference sample finding problem of the orig-
inal ratio-based method. It inherits the characteristic of GENESHIFT that
has little negative impact on the data distortion (only on samples). As a
non-parametric method, it is stable and has high performance in prediction
applications for cancer data sets. It has low computational cost and can be
easy adapted to large volume data applications.
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Chapter 6

Mining Robust Local Subgraphs
in Large Graphs

Robustness is a critical measure of the resilience and performance of large
networked systems. Most works study the robustness of graphs as a whole.
In this chapter, we focus on local robustness and pose a novel problem in the
line of subgraph mining: given a large graph, how can we find its most robust
local subgraphs (RLS)? Robust subgraphs can be thought of as the anchors
of the graph that hold together its connectivity and find several applications.

Our problem formulation is related to the recently proposed general frame-
work [6] for the densest subgraph problem, however differs from it substantially
as robustness concerns with the placement of edges, i.e. the subgraph topol-
ogy, as much as the number of edges in a subgraph. We offer the following
contributions: (i) we show that our RLS-Problem is NP-hard and analyze
its properties, (ii) we propose two heuristic algorithms based on top-down and
bottom-up search strategies, (iii) we present simple modifications of our al-
gorithms to handle three variants of the original RLS-Problem. Extensive
experiments on many real-world graphs demonstrate our ability to find sub-
graphs with higher robustness than the densest subgraphs [5, 6] even at lower
densities, suggesting that the existing approaches are not as suitable for the
new robust subgraph mining setting.

6.1 Chapter Introduction

Large complex networked systems, such as transportation and communication
networks, are a major part of our modern world. The performance and func-
tion of such complex networks rely on their structural robustness, which is
their ability to retain connectivity in the face of damage to parts of the net-
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work [102]. There are many quantitative metrics to measure the robustness
of a network. However, among other desirable properties, it is crucial for a
robustness measure to emphasize the existence of alternative or back-up paths
between nodes more than just the shortest paths.

In this chapter, we adopt one such measure based on the reachability
(phrased as the communicability) of the nodes in the network [103]. We then
introduce a novel problem related to graph robustness: Given a large graph,
which sets of nodes exhibit the strongest communicability among each other?
In other words, how can we identify the most robust subgraphs in a large
graph?

From the practical point of view, robust subgraphs can be considered as
the “anchors” of the graph, around which others are connected. They likely
form the cores of larger communities or constitute the central backbones in
large networks, responsible for most of the connectivity. For example, robust
subgraphs can correspond to strong communities in social and collaboration
networks or robust regions in the power grid. Moreover, robust interaction
patterns in biological networks can help the understanding of healthy and dis-
eased functional classes, and in financial networks the strength and robustness
of the market.

While the robust subgraph mining problem has not been studied before,
similar problems have been addressed in the literature (§6.2). Probably the
most similar to ours is the densest subgraph mining problem, aiming to find
subgraphs with highest average degree [5, 104, 105] or edge density [6, 106].
However, density (whichever way it is defined) is essentially different from
robustness mainly because while the former concerns with the number of edges
in the subgraph, the topology is at least as critical for the latter (§6.3.1).

The main contributions of our work are the following:

• We formulate a new problem of finding the most robust local subgraphs
(RLS) in a given graph. While in the line of subgraph mining problems,
it has not been studied theoretically before (§6.3).
• We show that the RLS-Problem is NP-hard (§6.3.2), and further study

its properties (§6.3.2).
• We propose two fast heuristic algorithms to solve the RLS-Problem for

large graphs. One is a top-down greedy algorithm, which iteratively re-
moves a node that affects the robustness the least. The other algorithm
is a bottom-up solution based on a meta-heuristic called the greedy ran-
domized adaptive search procedure (GRASP) [107] (§6.4).
• We define three practical variants of the RLS-Problem; finding (i) the

most robust global subgraph without any size constraint, (ii) the top-k
most robust local subgraphs, and (iii) the most robust local subgraph
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containing a set of user-given seed nodes (§6.3.2). We show how to mod-
ify our algorithms proposed for the RLS-Problem to solve its variants
(§6.4).
• We extensively evaluate our proposed solutions on numerous real-world

graphs. Since our RLS-Problem is a new one, we compare our re-
sults to those of three algorithms (one in [5], two in [6]) that has been
proposed for the densest subgraph problem. Our results show that we
find subgraphs with higher robustness than the densest subgraphs even
at lower densities, demonstrating that the existing algorithms are not
compatible for the new problem setting (§6.5).

6.2 Related Works

Robustness is a critical property of graphs. Thus, it has been studied ex-
tensively in various fields including physics, biology, mathematics, and net-
working. One of the early studies in measuring graph robustness shows that
scale-free graphs are robust to random failures but vulnerable to intentional
attacks, while for random networks the difference between the two strategies
is small [108]. This observation has stimulated studies on the response of
networks to various attack strategies [109–114]. Other works look at how to
design networks that are optimal with respect to some survivability criteria
[115–118].

With respect to local regions, Trajanovski et al. aim to spot critical regions
in a graph the destruction of which would cause the biggest harm to the
network [119]. Similar works aim to identify the critical nodes and links of a
network [120–123]. These works try to spot vulnerability points in the network,
whereas our objective is somewhat orthogonal: identify robust regions. Closest
to ours, Andersen et al. consider a spectral version of the densest subgraph
problem and propose algorithms for identifying small subgraphs with large
spectral radius [124].

While having major distinctions as we illustrated in this work, robust sub-
graphs are related to dense subgraphs, which have been studied extensively.
Finding the largest clique in a graph, well-known to be NP-complete [125], is
also shown to be hard to approximate [126].

A relaxation of the clique problem is the densest subgraph problem. Gold-
berg [105] and Charikar [5] designed exact poly-time and 1

2
-approximate linear-

time solutions to this problem, respectively, where density is defined as the
average degree. This problem is shown to become NP-hard when the size of
the subgraph is restricted [127]. Most recently, Tsourakakis et al. [6] also
proposed fast heuristic solutions, where they define density as edge surplus;
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the difference between number of edges and α fraction of maximum edges,
for user-specified constant α > 0. Likewise, Pei et al. study detecting quasi-
cliques in multi-graphs [128]. Other definitions include k-cores, k-plexes, and
k-clubs, etc. [129].

Dense subgraph discovery is related to finding clusters in graphs, however
with major distinctions. Most importantly, dense subgraph discovery has to
do with absolute density where there exists a preset threshold for what is suf-
ficiently dense. On the other hand, graph clustering concerns with relative
density measures where density of one region is compared to another. More-
over, not all clustering objectives are based on density and not all types of
dense subgraphs can be found by clustering algorithms [129].

In summary, while similarities among them exist, discovery of critical re-
gions, robust subgraphs, cliques, densest subgraphs, and clusters are substan-
tially distinct graph mining problems, for which different algorithms can be
applied. To the best of our knowledge, our work is the first to consider iden-
tifying robust local subgraphs in large graphs.

6.3 Robust Local Subgraphs

6.3.1 Graph Robustness

Robustness is a critical property of large-scale networks, and thus has been
studied in various fields including physics, mathematics, computer science,
and biology. As a result, there exists a diverse set of robustness measures,
e.g., mean shortest paths, efficiency, pairwise connectivity, etc. [130].

In this work, we adopt a spectral measure of robustness, called natural
connectivity [131], written as

λ̄(G) = log(
1

n

n∑
i=1

eλi) , (6.1)

which can be thought of as the “average eigenvalue” of G, where λ1 ≥ λ2 ≥
... ≥ λn denote a non-increasing ordering of the eigenvalues of its adjacency
matrix A.

Among other desirable properties [110], natural connectivity is interpretable;
it is directly related to the subgraph centralities (SC) in the graph. The
SC(i) of a node i is known as its communicability [103], and is based on the
“weighted” sum of the number of closed walks that it participates in:

64



S(G) =
n∑
i=1

SC(i) =
n∑
i=1

∞∑
k=0

(Ak)ii
k!

,

where (Ak)ii is the number of closed walks of length k of node i. The k! scaling
ensures that the weighted sum does not diverge, and longer walks count less.
S(G) is also referred as the Estrada index [103], and has been shown to strongly
correlate with the folding degree of proteins [132].

Noting that
∑n

i=1(Ak)ii = trace(Ak) =
∑n

i=1 λ
k
i and using the Taylor series

of the exponential function we can write

S(G) =
∞∑
k=0

n∑
i=1

(Ak)ii
k!

=
n∑
i=1

∞∑
k=0

λki
k!

=
n∑
i=1

eλi .

Natural connectivity is then the normalized Estrada index and quantifies
the “average communicability” in a graph.

Robustness vs. Density

Graph robustness appears to be related to graph density. Here we show that
although the two properties are related, there exist key distinctions between
them.

Firstly, while density directly uses the number of edges e, such as 2e(G)
|V | as in

average degree [5, 104, 105] or 2e(G)
|V |(|V |−1)

as in edge density [6, 106], robustness
follows an indirect route; it quantifies the count and length of paths and uses
the graph spectrum. Thus, the objectives of robust and dense subgraph mining
problems are distinct.

More notably, density concerns with the number of edges in the graph and
not with the topology. On the other hand, for robustness the placement of
edges (i.e., topology) is as much, if not more important. In fact, graphs with
the same number of nodes and edges but different topologies are indistinguish-
able from the density point of view (Figure 6.1).

To illustrate further, we show in Figure 6.2 the robustness and density ofR(=(0.9804(

R=0.9965(

R(=(0.9564(

R(=(0.9804(

R=0.9965(

R(=(0.9564(

R(=(0.9804(

R=0.9965(

R(=(0.9564(

λ̄ = 0.9564 λ̄ = 0.9804 λ̄ = 0.9965

Figure 6.1: Example graphs with the same density but different robustness, i.e.
topology.
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Figure 6.2: Robustness vs. density of 100,000 connected subgraphs on a real email
graph.

example subgraphs, each of size 50, sampled1 from a real-world email network
(§6.5, Table 6.1). We notice that while the two properties are correlated,
subgraphs with the same density do have a range of different robustness values.
Moreover, among all the samples, the densest and the most robust subgraphs
are distinct.

6.3.2 Problem Definition

In their inspiring work [6], Tsourakakis et al. recently defined a general frame-
work for subgraph density functions, which is written as

fα(S) = g(e[S])− αh(|S|) ,

where S ⊆ V is a set of nodes, S 6= ∅, e[S] is the number of edges in the
subgraph induced by S, α > 0, and g and h are any two strictly increasing
functions.

Under this framework, maximizing the average degree of a subgraph [5,
104, 105] corresponds to g(x) = h(x) = log x and α = 1 such that

f(S) = log
e[S]

|S|
.

In order to define our problem, we can relate the objective of our setting
to this general framework. Specifically, our objective can be written as

f(S) = log

∑|S|
i=1 e

λi

|S|
,

which is to maximize the average eigenvalue of a subgraph. As such, the
objectives of the two problems are distinct, but they both relate to a more

1We create each subgraph using snowball sampling: we pick a random node and progressively add its
neighbors with probability p, and iterate in a depth-first fashion. Connectivity is guaranteed by adding
at least one neighbor of each node. We use varying p ∈ (0, 1) that controls the tree-likeness, to obtain
subgraphs with various densities.
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general framework [6].
In the following, we formally define our robust local subgraph mining prob-

lem, which is to find the highest robustness subgraph of a certain size (hence
the locality) in a given graph, which we call the RLS-Problem.

Problem 1 (RLS-Problem). Given a graph G = (V,E) and an integer s,
find a subgraph with nodes S∗ ⊆ V of size |S∗| = s such that

f(S∗) = log
s∑
i=1

eλi([S
∗]) − log s ≥ f(S), ∀S ⊆ V, |S| = s .

S∗ is referred as the most robust s-subgraph.

One can interpret a robust subgraph as containing a set of nodes having
large communicability within the subgraph.

Problem Hardness

In this section we show that the optimal RLS-Problem is NP-Hard. We
write the decision version of our problem as

P1. (robust s-subgraph problem RLS-Problem) is there a subgraph S in
graph G with |S| = s nodes and robustness λ̄(S) ≥ α, for some α ≥ 0?

We reduce from the NP-Complete s-clique problem [125].

P2. (s-clique problem CL) is there clique of size s in G?

Proof. It is easy to see that P1 is in NP, since given a graph G we can guess
the subgraph with s nodes and compute its robustness in polynomial time.

In the reduction, the conversion of the instances works as follows. An
instance of CL is a graph G = (V,E) and an integer s. We pass G, s, and
α = λ̄(Cs) to RLS-Problem, where Cs is a clique of size s. We show that a
yes instance of CL maps to a yes instance of RLS-Problem, and vice versa.
First assume C is a yes instance of CL, i.e., there exists a clique of size s in G.
Clearly the same is also a yes instance of RLS-Problem as λ̄(Cs) ≥ α. Next
assume S is a yes instance of RLS-Problem, thus λ̄(S) ≥ λ̄(Cs). The proof
is by contradiction. Assume S is a subgraph with s nodes that is not a clique.
As such, it should have one or more missing edges from Cs. Let us denote
by Wk = trace(Ak

Cs
) the number of closed walks of length k in Cs. Deleting

an edge from Cs, Wk will certainly not increase, and in some cases (e.g., for
k = 2) will strictly decrease. As such, any s-subgraph S ′ of Cs with missing
edges will have λ̄(S ′) < λ̄(Cs), which is a contradiction to our assumption that
S is a yes instance of the RLS-Problem. Thus, S should be an s-clique and
also a yes instance of CL.
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Properties of Robust Subgraphs

NP-hardness of the RLS-Problem suggests that it cannot be solved in poly-
nomial time, unless P=NP. As a consequence, one needs to resort to heuristic
algorithms.

Certain characteristics of hard combinatorial problems sometimes guide the
development of approximation algorithms for those problems. For example,
cliques display a key property used in successful algorithms for the maximum
clique problem called heredity, which states that if the property exists in a
graph, it also exists in all its induced subgraphs. Thanks to this property of
cliques, e.g., checking maximality by inclusion is a trivial task and effective
pruning strategies can be employed within a branch-and-bound framework.
In this section, we study two such characteristics; subgraph monotonicity and
semi-heredity for the RLS-Problem, and show that, alas, robust subgraphs
do not exhibit any of these properties.

Semi-heredity: It is easy to identify α-robust graphs containing subsets of
nodes that induce subgraphs with robustness less than α. As such, robust
subgraphs do not display heredity. Here, we study a weaker version of heredity
called semi-heredity or quasi-inheritance.

Definition 1 (Semi-heredity). Given any graph G = (V,E) satisfying a prop-
erty p, if there exists some v ∈ V such that G−v ≡ G[V \{v}] also has property
p, p is called a semi-hereditary property.

Theorem 1. The graph property of having at least α robustness λ̄α does not
display semi-heredity. In other words, it does not hold that any α-robust graph
with s > 1 nodes is a strict superset of some α-robust graph with s− 1 nodes.

Proof. The proof is by counter example. In particular, robustness of cliques
is not semi-hereditary. Without loss of generality, let Ck be a k-clique. Then,
λ̄(Ck) = ln 1

k
(ek−1 + (k − 1)1

e
). Any subgraph of Ck with k − 1 nodes is also a

clique having strictly lower robustness, for k > 1, i.e.,

1

k − 1
(ek−2 + (k − 2)

1

e
) ≤ 1

k
(ek−1 + (k − 1)

1

e
)

kek−2 +
k(k − 2)

e
≤ (k − 1)e(k−1) +

(k − 1)2

e
kek−1 + k2 − 2k ≤ (k − 1)ek + (k2 − 2k + 1)

kek−1 ≤ (k − 1)ek + 1

where the inequality is sharp only for k = 1. Thus, for α = λ̄(Ck), there exists
no v such that Ck − v is α-robust.
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Subgraph monotonicity: As we defined in §6.3.1, our robustness mea-
sure can be written in terms of subgraph centrality and can be as λ̄(G) =
log( 1

n
S(G)).

As S(G) is the total number of weighted closed walks, λ̄ is strictly mono-
tonic with respect to edge additions and deletions. However, monotonicity is
not directly obvious for node modifications due to the 1

n
factor in the definition,

which changes with the graph size.

Definition 2 (Subgraph Monotonicity). An objective function (in our case,
robustness) R is subgraph monotonic if for any subgraph g = (V ′, E ′) of G =
(V,E), V ′ ⊆ V and E ′ ⊆ E, R(g) ≤ R(G).

Theorem 2. Robustness λ̄ is not subgraph monotonic.

Proof. Assume we start with any graph G with robustness λ̄(G). Next, we
want to find a graph S with as large robustness as λ̄(G) but that contains the
minimum possible number of nodes Vmin. Such a smallest subgraph is in fact
a clique, with the largest eigenvalue (Vmin − 1) and the rest of the (Vmin − 1)
eigenvalues equal to −1.2 To obtain the exact value of Vmin, we need to solve
the following

λ̄(G) = log

[
1

Vmin

(
eVmin−1 + (Vmin − 1)e−1

)]
which, however, is a transcendental equation and is often solved using numer-
ical methods. To obtain a solution quickly, we calculate a linear regression
over (λ̄(G), Vmin) samples. We show a sample simulation in Figure 6.3 for Vmin

1 to 100 where the regression equation is

Vmin = 1.0295 ∗ λ̄(G) + 3.2826

Irrespective of how one computes Vmin, we next construct a new graph
G′ = G ∪ S ′ in which G is the original graph with n nodes and S ′ is a clique
of size Vmin + 1. Let λ = λ̄(G) and λ′ = λ̄(S ′), and as such, λ < λ′. Then, we
can write the robustness of G′ as

λ̄(G′) = ln
neλ + (Vmin + 1)eλ

′

n+ Vmin + 1
< ln

neλ
′
+ (Vmin + 1)eλ

′

n+ Vmin + 1
= λ′

which shows that S ′, which is a subgraph of G′, has strictly larger robust-
ness than the original graph. This construction shows that λ̄ is not subgraph
monotonic.

2Any subgraph g(C) of a k-clique C has strictly lower robustness λ̄. This is true when g(C) also contains
k nodes, due to monotonicity of S(G) to edge removals (§6.3.2). Moreover, any smaller clique has strictly
lower robustness, see proof for semi-heredity.
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Figure 6.3: Relation between λ̄(G) and Vmin

As we mentioned for cliques before, problems that exhibit properties such
as (semi-)heredity and monotonicity often enjoy algorithms that explore the
search space in a smart and efficient way. For example, such algorithms employ
some “smart node ordering” strategies to find iteratively improving solutions.
This starts with the first node in the order and sequentially adds the next
node such that the resulting subgraphs all satisfy some desired criteria, like a
minimum density, which enables finding large solutions quickly.

Showing that our robustness objective displays neither characteristic im-
plies that our RLS-Problem is likely harder to solve than the maximum
clique and densest subgraph problems as, unlike robust subgraphs, (quasi-
)cliques are shown to exhibit e.g., the (semi-)heredity property [106].

Problem Variants

Before we conclude this section, we introduce three variants of our RLS-
Problem, that may also be practical in certain real-world scenarios.

Given that robustness λ̄ is not subgraph-monotonic, it is natural to consider
the problem of finding the subgraph with the maximum overall robustness in
the graph (without any restriction on its size), which is not necessarily the full
graph. We call this first variant the robust global subgraph problem or the
RGS-Problem.

Problem 2 (RGS-Problem). Given a graph G = (V,E), find a subgraph
S∗ ⊆ V such that

f(S∗) = max
S⊆V

f(S) .

S∗ is referred as the most robust subgraph.
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Another variant involves finding the top k most robust s-subgraphs in a
graph, which we call the kRLS-Problem.

Problem 3 (kRLS-Problem). Given a graph G = (V,E), and two integers
s and k, find k subgraphs S = S∗1 , . . . , S

∗
k, each of size |S∗i | = s, 1 ≤ i ≤ k

such that

f(S∗1) ≥ f(S∗2) ≥ . . . ≥ f(S∗k) ≥ f(S), ∀S ⊆ V, |S| = s .

The set S is referred as the top-k most robust s-subgraphs.

In the final variant, the goal is to find the most robust s-subgraph that
contains a set of user-given seed nodes.

Problem 4 (Seeded-RLS-Problem). Given a graph G = (V,E), an integer
s, and a set of seed nodes U , |U | ≤ s, find a subgraph U ⊆ S∗ ⊆ V of size
|S∗| = s such that

f(S∗) = max
U⊆S⊆V,|S|=s

f(S) .

S∗ is referred as the most robust seeded s-subgraph.

It is easy to see that when k = 1 and U = ∅, the kRLS-Problem and
the Seeded-RLS-Problem respectively reduce to the RLS-Problem, and
thus can easily be shown to be also NP-hard. A formal proof of hardness for
the RGS-Problem, however, is nontrivial and remains an interesting open
problem for future research.

In the next section, where we propose solutions for our original RLS-
Problem, we also show how our algorithms can be adapted to solve these
three variants of the problem.

6.4 Robust Local Subgraph Mining

Given the hardness of our problem, we propose two heuristic solutions. The
first is a top-down greedy approach, called GreedyRLS, in which we iter-
atively remove nodes to obtain a subgraph of desired size, while the second,
called GRASP-RLS, is a bottom-up approach in which we iteratively add
nodes to build up our subgraphs. Both solutions carefully order the nodes by
their contributions to the robustness.

6.4.1 Greedy Top-down Search Approach

This approach iteratively and greedily removes the nodes one by one from
the given graph, until a subgraph with the desired size s is reached. At each
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iteration, the node whose removal results in the maximum robustness of the
residual graph among all the nodes is selected for removal.3

The removal of a node involves removing the node itself and the edges
attached to it from the graph, where the residual graph becomes G[V \{i}].
Let i denote a node to be removed. Let us then write the updated robustness
λ̄∆ as

λ̄∆ = log

(
1

n− 1

n−1∑
j=1

eλj+∆λj

)
. (6.2)

As such, we are interested in identifying the node that maximizes λ̄∆, or
equivalently

max . eλ1+∆λ1 + eλ2+∆λ2 + . . .+ eλn−1+∆λn−1

eλ1(e∆λ1 + e(λ2−λ1)e∆λ2 + . . .+ e(λn−1−λ1)e∆λn−1)

c1(e∆λ1 + c2e
∆λ2 + . . .+ cn−1e

∆λn−1) (6.3)

where cj’s denote constant terms and cj ≤ 1, ∀j ≥ 2.

Updating the Eigen-pairs

When a node is removed from the graph, its spectrum (i.e., the eigen-pairs)
also changes. Recomputing the eigen-values for Equ. (6.3) every time a node
is removed is computationally challenging. Therefore, we employ fast update
schemes based on the first order matrix perturbation theory [133].

Let ∆A and (∆λj,∆uj) denote the change in A and (λj,uj) ∀j, respec-
tively, where ∆A is symmetric. Suppose after the adjustment A becomes

Ã = A + ∆A

where each eigen-pair (λ̃j, ũj) is written as

λ̃j = λj + ∆λj and ũj = uj + ∆uj

Lemma 1. Given a perturbation ∆A to a matrix A, its eigenvalues can be
updated by

∆λj = uj
′∆Auj. (6.4)

Proof. We can write

(A + ∆A)(uj + ∆uj) = (λj + ∆λj)(uj + ∆uj)

3Robustness of the residual graph can be lower or higher; S(G) decreases due to monotonicity, but
denominator also shrinks to (n− 1).
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Expanding the above, we get

Auj + ∆Auj + A∆uj + ∆A∆uj

= λjuj + ∆λjuj + λj∆uj + ∆λj∆uj (6.5)

By concentrating on first-order approximation, we assume that all high-
order perturbation terms are negligible, including ∆A∆uj and ∆λj∆uj. Fur-
ther, by using the fact that Auj = λjuj (i.e., canceling these terms) we obtain

∆Auj + A∆uj = ∆λjuj + λj∆uj (6.6)

Next we multiply both sides by uj
′ and by symmetry of A and orthonormal

property of its eigenvectors we get Equ. (6.4), which concludes the proof.

Since updating eigenvalues involves the eigenvectors, which also change
with node removals, we use the following to update the eigenvectors as well.

Lemma 2. Given a perturbation ∆A to a matrix A, its eigenvectors can be
updated by

∆uj =
n∑

i=1,i 6=j

(
ui
′∆Auj

λj − λi
ui

)
. (6.7)

Proof. Using the orthogonality property of the eigenvectors, we can write the
change ∆uj of eigenvector uj as a linear combination of the original eigenvec-
tors:

∆uj =
n∑
i=1

αijui (6.8)

where αij’s are small constants that we aim to determine.
Using Equ. (6.8) in Equ. (6.6) we obtain

∆Auj + A
n∑
i=1

αijui = ∆λjuj + λj

n∑
i=1

αijui

which is equivalent to

∆Auj +
n∑
i=1

λiαijui = ∆λjuj + λj

n∑
i=1

αijui

Multiplying both sides of the above by uk
′, k 6= j, we get

uk
′∆Auj + λkαkj = λjαkj
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Therefore,

αkj =
uk
′∆Auj

λj − λk
(6.9)

for k 6= j. To obtain αjj we use the following derivation.

ũj
′ũj = 1⇒ (uj + ∆uj)

′(uj + ∆uj) = 1

⇒ 1 + 2uj
′∆uj + ‖∆uj‖2 = 1

After we discard the high-order term, and substitute ∆uj with Equ. (6.8) we
get 1 + 2αjj = 1⇒ αjj = 0.

We note that for a slightly better approximation, one can choose not to

ignore the high-order term which is equal to ‖∆uj‖2 =
n∑
i=1

α2
ij. Thus, one can

compute αjj as

1 + 2αjj +
n∑
i=1

α2
ij = 1⇒ 1 + 2αjj + α2

jj +
n∑

i=1,i 6=j

α2
ij = 1

⇒ (1 + αjj)
2 +

n∑
i=1,i 6=j

α2
ij = 1⇒ αjj =

√√√√1−
n∑

i=1,i 6=j

α2
ij − 1

All in all, using the αij’s as given by Equ. (6.9) and αjj = 0, we can see
that ∆uj in Equ. (6.8) is equal to Equ. (6.7).

Node Selection for Removal

By using Lemma 1, we can write the affect of perturbing A with the removal
of a node i on the eigenvalues as

∆λj = uj
′∆Auj = −2uij

∑
v∈N (i)

uvj (6.10)

where A(i, v) = A(v, i) = −1, for v ∈ N (i), and 0 elsewhere. That is, the
change in jth eigenvalue after a node i’s removal is twice the sum of eigenscores
of i’s neighbors times eigenscore of i, where eigenscores denote the correspond-
ing entries in the associated jth eigenvector. Thus, at each step we choose the
node that maximizes the following.

max
i∈V

c1

(
e
−2ui1

∑
v∈N (i)

uv1

+ . . .+ cn−1e
−2uin−1

∑
v∈N (i)

uvn−1
)

(6.11)
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We remark that it is infeasible to compute all the n eigenvalues of a graph
with n nodes, for very large n. Thanks to the skewed spectrum of real-world
graphs [134], we can rely on the observation that only the top few eigenvalues
have large magnitudes. This implies that the cj terms in Equ. (6.11) become
much smaller for increasing j and can be ignored. Therefore, we use the
top t eigenvalues to approximate the robustness of a graph. In the past,
the skewed property of the spectrum has also been exploited to approximate
triangle counts in large graphs [135]. The outline of our algorithm, called
GreedyRLS, is given in Algorithm 10.

Complexity Analysis

Algorithm 10 has three main components: (a) computing top t eigenpairs (L1):
O(nt+mt+nt2), (b) computing Equ. (6.11) scores for all nodes (L4): O(mt)
(
∑

i dit = t
∑

i di = 2mt), and (c) updating eigenvalues & eigenvectors when
a node i is removed (L10-11): O(dit) & O(nt2), respectively.

Performing (b) for all nodes at every iteration takes O(tmn). Moreover,
performing (c) iteratively for all nodes requires

∑n
i=1 dit = t

∑
i di = 2mt, i.e.,

O(tm) for eigenvalues and
∑n

i=k it
2, O(t2n2) for eigenvectors. Therefore, the

overall complexity becomes O(max(tmn, t2n2)).
As we no longer would have small perturbations to the adjacency matrix

over many iterations, updating the eigen-pairs at all steps would yield bad
approximations. As such, we recompute the eigen-pairs at every n

2
, n

4
, n

8
, . . .

steps. Performing recomputes less frequently in early iterations is reasonable,
as early nodes are likely the peripheral ones that do not affect the eigen-
pairs much, for which updates would suffice. When perturbations accumulate
over iterations and especially when we get closer to the solution, it becomes
beneficial to recompute the eigen-pairs more frequently.

In fact, in a greedier version one can drop the eigen-pair updates (L9-
11), so as to perform O(log n) recomputes, and the complexity becomes
O(max(tm log n, t2n log n)).

Algorithm Variants

To adapt our GreedyRLS algorithm for the kRLS-Problem, we can find
one subgraph at a time, remove all its nodes from the graph, and continue until
we find k subgraphs or end up with an empty graph. This way we generate
pairwise disjoint robust subgraphs.

For the Seeded-RLS-Problem, we can add a condition to never remove
nodes u ∈ U that belong to the seed set.
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Algorithm 10: GreedyRLS

Input : Graph G = (V,E), its adj. matrix A, integer s.
Output: Subset of nodes S∗ ⊆ V , |S∗| = s.

1 Compute top t eigen-pairs (λj,uj) of A, 1 ≤ j ≤ t;
2 Sn ← V , λ̄(Sn) = λ̄(G);
3 for z = n down to s+ 1 do
4 Select node ī out of ∀i ∈ Sz that maximizes Equ. (6.11) for top t

eigen-pairs of G[Sz], i.e.

f = max
i∈Sz

c1

(
e
−2ui1

∑
v∈N (i)

uv1

+ . . .+ cte
−2uit

∑
v∈N (i)

uvt
)

where c1 = eλ1 and cj = e(λj−λ1) for 2 ≤ j ≤ t;

5 Sz−1 := Sz\{̄i}, λ̄(Sz−1) = log f
z−1

;

6 Update A; A(:, ī) = 0 and A(̄i, :) = 0;
7 if z = n

2
, n

4
, n

8
, . . . then

8 Compute top t eigen-pairs (λj,uj) of A, 1 ≤ j ≤ t
9 end

10 else
11 Update top t eigenvalues of A by Equ. (6.4);
12 Update top t eigenvectors of A by Equ. (6.7);

13 end

14 end
15 Return S∗ ← Sz=s;

GreedyRLS algorithm is particularly suitable for the RGS-Problem,
where we can iterate for z = n, . . . , Vmin

4, record λ̄(Sz) for each subgraph at
each step (L5), and return the subgraph with the maximum robustness among
Sz’s.

6.4.2 Greedy Randomized Adaptive Search Procedure
(GRASP) Approach

The top-down approach makes a greedy decision at every step to reach a
solution. If the desired subgraphs are small (i.e., for small s), however, it
implies many greedy decisions, especially on large graphs, where the number

4Vmin denotes the minimum number of nodes a clique C with robustness at least as large as the full
graph’s would contain. Any subgraph of C has lower robustness (see §6.3.2) and hence would not qualify as
the most robust subgraph.
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of greedy steps (n − s) would be excessive. Therefore, here we propose a
bottom-up approach that performs local operations to build up solutions from
scratch.

Our local approach is based on a well-established meta-heuristic called
GRASP [107] for solving combinatorial optimization problems. A GRASP,
or greedy randomized adaptive search procedure, is a multi-start or iterative
process, in which each iteration consists of two phases: (i) a construction
phase, in which an initial feasible solution is produced, and (ii) a local search
phase, in which a better solution with higher objective value in the neigh-
borhood of the constructed solution is sought. The best overall solution is
returned as the final result.

The pseudo-code in Algorithm 11 shows the general GRASP for maxi-
mization, where Tmax iterations are done. For maximizing our objective, we
use f : S → R ≡ λ̄, i.e., the robustness function as given in Equ. (6.1). We
next describe the details of our two GRASP phases.

Algorithm 11: GRASP-RLS

Input : Graph G = (V,E), Tmax, f(·), g(·), integer s.
Output: Subset of nodes S∗ ⊆ V , |S∗| = s

1 f ∗ = −∞, S∗ = ∅;
2 for z = 1, 2, . . . , Tmax do
3 S ← GRASP-RLS-Construction(G, g(·), s);
4 S ′ ← GRASP-RLS-LocalSearch(G, S, f(·), s);
5 if f(S ′) > f ∗ then
6 S∗ ← S, f ∗ = f(S)
7 end

8 end
9 Return S∗

Construction

In the construction phase, a feasible solution, which we call a seed subgraph,
is iteratively constructed, one node at a time. At each iteration, the choice of
the next node to be added is determined by ordering all candidate nodes C
(i.e., those that can be added to the solution) in a restricted candidate list,
called RCL, with respect to a greedy function g : C → R, and randomly
choosing one of the candidates in the list. The size of RCL is determined
by a real parameter β ∈ [0, 1], which controls the amount of greediness and
randomness. β = 1 corresponds to a purely greedy construction, while β = 0
produces a purely random one. Algorithm 12 describes our construction phase.
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Algorithm 12: GRASP-RLS-Construction

Input : Graph G = (V,E), g(·), integer s
Output: Subset of nodes S ⊆ V

1 S ← ∅, C ← V ;
2 while |S| < s do
3 Evaluate g(v) for all v ∈ C;
4 c̄← maxv∈C g(v), c← minv∈C g(v);
5 Select β ∈ [0, 1] using a strategy;
6 RCL← {v ∈ C|g(v) ≥ c+ β(c̄− c)};
7 Select a vertex r from RCL at random;
8 S := S ∪ {r}, C ← N (S)\S;

9 end
10 Return S;

Selecting g(·): We use three different scoring functions for ordering the candi-
date nodes. First we aim to include locally dense nodes in the seed subgraphs,
therefore we use g(v) = t(v)

d(v)
, where t(v) denotes the number of local triangles

of v, and d(v) is its degree. We approximate the local triangle counts using
the technique described in [135].

Another approach is sorting the candidate nodes by their degree in the
induced neighborhood subgraph of S, i.e., g(v) = dG[C∪S](v). This strategy
favors high degree nodes in the first iteration of the construction.

Finally we use g(v) = ∆λ̄v, i.e., the difference in robustness when a candi-
date node is added to the current subgraph. The first iteration then chooses
a node at random.
Selecting β: Setting β = 1 is purely greedy and would produce the same
seed subgraph in every GRASP iteration. To incorporate randomness, while
staying close to the greedy best-first selection, one can choose a fixed 1 >
β > 0.5, which produces high average solution values in the presence of large
variance in constructed solutions [107]. We also try choosing β uniformly.
Other more complex selection strategies include using an increasingly non-
uniform discrete distribution (where large values are favored), and reactive
GRASP [136] that guides the construction by the solutions found along the
previous iterations (where β values that produced better average solutions are
favored).
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Local Search

A solution generated by GRASP-RLS-Construction is a preliminary one
and may not necessarily have the best robustness. Thus, it is almost always
beneficial to apply a local improvement procedure to each constructed solution.
A local search algorithm works in an iterative fashion by successively replacing
the current solution with a better one in the neighborhood of the current
solution. It terminates when no better solution can be found. We give the
pseudo-code of our local search phase in Algorithm 13.

As the RLS-Problem asks for a subgraph of size s, the local search takes
as input an s-subgraph generated by construction and searches for a better
solution around it by “swapping” nodes in and out. Ultimately it finds a locally
optimal subgraph of size upper bounded by s + 1. As an answer, it returns
the best s-subgraph with the highest robustness found over the iterations.5 As
such, GRASP-RLS-LocalSearch is an adaptation of a general local search
procedure to yield subgraphs of desired size, as in our setting.
Convergence: The local search algorithm is guaranteed to terminate, as the
objective function (i.e., subgraph robustness) improves with every iteration
and the robustness values are upper-bounded from above, by the robustness
of the n-clique, i.e., λ̄(S) < λ̄(Cn), for all |S| ≤ n.

Complexity analysis

The size of subgraphs |S| obtained during local search is O(s). Computing
their top t eigen-pairs takes O(s2t + st2), where we use e([S]) = O(s2) as
robust subgraphs are often dense. To find the best improving node (L12), all
nodes in the neighborhood N (S)\S are evaluated, with worst-case size O(n).
As such, each expansion costs O(ns2t+nst2). With deletions incorporated (L3-
4), the number of expansions can be arbitrarily large [137], however assuming
O(s) expansions are done, overall complexity becomes O(ns3t + ns2t2). If all
t = |S| eigen-pairs are computed, the complexity is quadruple in s and linear
in n, which is feasible for small s. Otherwise, we exploit eigen-pair updates as
in GreedyRLS to reduce computation.

Algorithm Variants

Adapting GRASP-RLS for the kRLS-Problem can be easily done by re-
turning the best k (out of Tmax) distinct subgraphs computed during the
GRASP iterations in Algorithm 11. These subgraphs are likely to overlap,
although one can incorporate constraints as to the extent of overlap.

5Note that the locally optimal solution size may be different from s.
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Algorithm 13: GRASP-RLS-LocalSearch

Input : Graph G = (V,E), S, integer s.
Output: Subset of nodes S ′ ⊆ V , |S ′| = s.

1 more← TRUE, S ′ ← S;
2 while more do
3 if there exists v ∈ S such that λ̄(S\{v}) ≥ λ̄(S) then
4 S := S\{v∗} where v∗ := maxv∈N (S)\S λ̄(S\{v});
5 if |S| = s then S ′ ← S;

6 end
7 else more← FALSE ;
8 add← TRUE;
9 while add and |S| ≤ s do

10 if there is v ∈ N (S)\S s.t. λ̄(S ∪ {v}) > λ̄(S) then
11 S := S ∪ {v∗}, v∗ := maxv∈N (S)\S λ̄(S ∪ {v});
12 more← TRUE;
13 if |S| = s then S ′ ← S;

14 end
15 else
16 add← FALSE;
17 end

18 end

19 end
20 Return S ′

For the Seeded-RLS-Problem, we can initialize set S with the seed
nodes U in construction, while, during the local search phase, we never allow
a node u ∈ U to leave S.

Finally, for the RGS-Problem, we can waive the size constraint in the
expansion step of local search.

6.5 Evaluations

We evaluate our proposed methods extensively on many real-world graphs, as
shown in Table 6.1. We select our graphs from various domains, including
biological, email, Internet AS backbone, P2P, collaboration, and Web.

Our work is in the general lines of subgraph mining, with a new objective
based on robustness. The closest to our setting is the densest subgraph mining.
Therefore, we compare our results to dense subgraphs found by Charikar’s
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algorithm [5] (which we refer as Charikar), as well as by Tsourakakis et al.’s
two algorithms [6] (which we refer as Greedy and LS for local search). We
remark that the objectives used in those works are distinct; average degree and
edge-surplus, respectively, and also different from ours. As such, we compare
the robust and dense subgraphs based on three main criteria: (a) robustness λ̄
as in Equ (6.1), (b) triangle density t[S]/

(|S|
3

)
, and (c) edge density e[S]/

(|S|
2

)
.

Table 6.2 shows results on several of our datasets. Note that the three
algorithms we compare to aim to find the densest subgraph in a given graph,
without a size restriction. Thus, each one obtains a subgraph of a different size.
To make the robust subgraphs (RS) comparable to densest subgraphs (DS)
found by each algorithm, we find subgraphs with the same size as Charikar,
Greedy, and LS, respectively noted as sCh, sGr, and sLs. We report our results
based on GreedyRLS and GRASP-RLS.6

We notice that densest subgraphs found by Greedy and LS are often sub-
stantially smaller than those found by Charikar, and also have higher edge
density, which was also the conclusion of [6]. On the other hand, robust sub-
graphs have higher robustness than densest subgraphs, even at lower densities.
This shows that high density does not always imply high robustness, and vice
versa, illustrating the differences in the two problem settings. It signifies the
emphasis of robust subgraph mining on the subgraph topology, rather than
the total edge count. We also note that GRASP-RLS consistently outper-
forms GreedyRLS, suggesting bottom-up is a superior strategy to top-down
search.

Figure 6.4 shows the relative difference in robustness of GRASP-RLS sub-
graphs over those by Charikar, Greedy, and LS on all of our graphs. We achieve
a wide range of improvements depending on the graph, while the difference is
always positive.

We remark that the above comparisons are made for subgraphs at sizes
where best results are obtained for each of the three densest subgraph algo-
rithms. Our algorithms, on the other hand, accept a subgraph size input s.
Thus, we compare the algorithms at varying output sizes next. Charikar and
Greedy are both top-down algorithms, in which the lowest degree node is re-
moved at each step and the best subgraph (best average degree or edge surplus,
respectively) is output among all graphs created along the way. We modify
these so that we pull out the subgraphs when size s is reached during the course
of the algorithms.7 Figure 6.5 shows that our GRASP-RLS produces sub-

6GRASP-RLS has various versions depending on choice of g(·) and β (§6.4.2). Our analysis suggests
best results are obtained for g(v) = ∆λ̄v and a uniform β ∈ [0.8, 1), which we report in this section.

7Local search by [6] finds locally optimal subgraphs, which are not guaranteed to grow to a given size
s. Thus, we omit comparison to LS subgraphs at varying sizes. Figure 6.4 shows improvements over LS
subgraphs are already substantially large.
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Table 6.1: Real-world graphs. δ: density, λ̄: robustness

Dataset n m δ λ̄

Jazz 198 2742 0.1406 34.74
Celegans N. 297 2148 0.0489 21.32
Email 1133 5451 0.0085 13.74

Oregon-A 7352 15665 0.0005 42.29
Oregon-B 10860 23409 0.0004 47.54
Oregon-C 13947 30584 0.0003 52.10

P2P-GnutellaA 6301 20777 0.0010 19.62
P2P-GnutellaB 8114 26013 0.0008 19.45
P2P-GnutellaC 8717 31525 0.0008 13.35
P2P-GnutellaD 8846 31839 0.0008 14.46
P2P-GnutellaE 10876 39994 0.0007 7.83

DBLP 317080 1049866 2.09×10−5 103.18
Web-Google 875713 4322051 1.13×10−5 99.36

Figure 6.4: Robustness gap (%) of GRASP-RLS over (top to bottom) LS, Greedy,
and Charikar on all graphs.

graphs with higher robustness than the rest of the methods at varying sizes
on two example graphs. This also shows that the densest subgraph mining
approaches are not suitable for our new problem.

Experiments thus far illustrate that we find subgraphs with higher robust-
ness than densest subgraphs. These are relative results. To show that the
subgraphs we find are in fact robust, we next quantify the magnitude of the
robustness scores we achieve through significance tests.

Given a subgraph that GRASP-RLS finds, we bootstrap B = 1000 new
subgraphs by rewiring its edges at random. We compute a p-value for each
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subgraph from the number of random subgraphs created by rewiring with
larger robustness than our method finds divided by B. The p-value essentially
captures the probability that we would be able to obtain a subgraph with
robustness greater than what we find by chance if we were to create a topology
with the same number of nodes and edges at random (note that all such
subgraphs would have the same edge density). Thus a low p-value implies
that, among the same density topologies, the one we find is in fact robust with
high probability.

Figure 6.6 shows that the subgraphs we find on almost all real graphs are
significantly robust at 0.05. For cases with large p-values, it is possible to
obtain higher robustness subgraphs with rewiring. For example, P2P-E is a
graph where all the robust subgraphs (also the dense subgraphs) found contain
very few or no triangles (see Table 6.2). Therefore, rewiring edges that short-
cut longer cycles they contain help improve their robustness. We remark that
large p-values indicate that the found subgraphs are not significantly robust,
but does not imply our algorithms are unable to find robust subgraphs. That
is because the rewired more robust subgraphs do not necessarily exist in the
original graph G, and it is likely that G does not contain any subgraph with
robustness that is statistically significant.

Next we analyze the performance of our GRASP-RLS. Recall that
GRASP-RLS-Construction quickly builds a subgraph which GRASP-
RLS-LocalSearch uses to improve over to obtain a better result. In Figure
6.7 we show the robustness of subgraphs obtained at construction and after
local search on two example graphs for s = 50 and Tmax = 300. We notice
that most of the GRASP-RLS iterations find a high robustness subgraph
right at construction. In most other cases, local search is able to improve
over construction results significantly. In fact, the most robust outcome on
Oregon-A (Figure 6.7 left) is obtained when construction builds a subgraph
with robustness around 6, which local search improves over 20.
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We next study the performance of GRASP-RLS w.r.t. scalability. Figure
6.8 shows that its running time grows linearly with respect to graph size on
the Oregon graphs.8

Finally, we perform several case studies on the DBLP co-authorship net-
work to analyze our subgraphs qualitatively. Here, we use the seeded variant
of our algorithm. Christos Faloutsos is a prolific researcher with various in-
terests. In Figure (Table) 6.3 (a), we invoke his interest in databases when
we use him and Rakesh Agrawal as seeds, given that Agrawal is an expert in
this field. On the other hand in (b), we invoke his interest in data mining
when we use Jure Leskovec as the second seed, who is a rising star in the
field. Likewise in (c) and (d) we find robust subgraphs around other selected
prominent researchers in data mining and databases. In (d,e) we show how
our subgraphs change with varying size. Specifically, we find a clique that the
seeds Widom and Ullman belong to for s=10. The subgraph of s=15, while
no longer a clique, remains stable with other researchers like Rajeev Motwani

8We have a total of 9 Oregon graphs with various sizes. We report results only on the largest 3 due to
space limit (see Table 6.1).
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and Hector Garcia-Molina added to it.

6.6 Chapter Summary

In this chapter, we introduced the RLS-Problem of finding most robust local
subgraphs of a given size in large graphs, as well as its three practical variants.
While our work bears similarity to densest subgraph mining, it differs from
it in its objective; robustness emphasizes subgraph topology more than edge
density. We showed that our problem is NP-hard and that it does not exhibit
semi-heredity or subgraph-monotonicity properties. We designed two heuristic
algorithms based on top-down and bottom-up search strategies, and showed
how we can adapt them to address the problem variants. We found that
our bottom-up strategy provides consistently superior results, scales linearly
with graph size, and finds subgraphs with significant robustness. Experiments
on many real-world graphs further showed that our subgraphs achieve higher
robustness than densest subgraphs even at lower densities, which signifies the
novelty of our problem setting.
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Chapter 7

Sparse Feature Graph

In this chapter, we introduce Sparse Feature Graph with the application in
redundant feature removal for high dimensional data. The redundant fea-
tures existing in high dimensional datasets always affect the performance of
learning and mining algorithms. How to detect and remove them is an impor-
tant research topic in machine learning and data mining research. Based on
the framework of sparse learning based unsupervised feature selection, Sparse
Feature Graph is introduced not only to model the redundancy between two
features, but also to disclose the group redundancy between two groups of
features. With SFG, we can divide the whole features into different groups,
and improve the intrinsic structure of data by removing detected redundant
features. With accurate data structure, quality indicator vectors can be ob-
tained to improve the learning performance of existing unsupervised feature
selection algorithms such as multi-cluster feature selection (MCFS).

7.1 Chapter Introduction

For unsupervised feature selection algorithms, the structure of data is used to
generate indication vectors for selecting informative features. The structure of
data could be local manifold structure [138] [139], global structure [140] [141],
discriminative information [142] [143] and etc. To model the structure of data,
methods like Gaussian similarity graph, or k-nearest neighbor similarity graph
are very popular in machine learning research. All these similarity graphs
are built based on the pairwise distance like Euclidean distance (L2 norm) or
Manhattan distance (L1 norm) defined between two data samples (vectors). As
we can see, the pairwise distance is crucial to the quality of indication vectors,
and the success of unsupervised feature selection depends on the accuracy of
these indication vectors.
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When the dimensional size of data becomes high, or say, for high dimen-
sional datasets, we will meet the curse of high dimensionality issue [144]. That
means the differentiating ability of pairwise distance will degraded rapidly
when the dimension of data goes higher, and the nearest neighbor indexing
will give inaccurate results [145] [146]. As a result, the description of data
structure by using similarity graphs will be not precise and even wrong. This
create an embarrassing chicken-and-egg problem [147] for unsupervised feature
selection algorithms: “the success of feature selection depends on the quality of
indication vectors which are related to the structure of data. But the purpose
of feature selection is to giving more accurate data structure.”

Most existing unsupervised feature selection algorithms use all original
features [147] to build the similarity graph. As a result, the obtained data
structure information will not as accurate as the intrinsic one it should be. To
remedy this problem, dimensionality reduction techniques are required. For
example, Principal Component Analysis (PCA) and Random Projection (RP)
are popular methods in machine learning research. However, most of them
will project the data matrix into another (lower dimensional) space with the
constraint to approximate the original pairwise similarities. As a result, we
lose the physical meaning or original features and the meaning of projected
features are unknown.

In this chapter, we proposed a graph-based approach to reduce the data
dimension by removing redundant features. Without lose of generality, we cat-
egorize features into three groups [148]: relevant feature,irrelevant feature and
redundant feature. A feature fi is relevant or irrelevant based on it’s correla-
tion with indication vectors (or target vectors named in other articles) Y =
{yi, i ∈ [1, k]}. For supervised feature selection algorithms [149] [23] [150],
these indication vectors usually relate to class labels. For unsupervised sce-
nario [151] [152], as we mentioned early, they follow the structure of data.
Redundant features are features that highly correlated to other features, and
have no contribution or trivial contribution to the target learning task. The
formal definition of redundant feature is by [153] based on the Markov blanket
given by [154].

Based on the philosophy of sparse learning based MCFS algorithm, a fea-
ture could be redundant to another single feature, or to a subset of features.
In this work, we propose a graph based approach to identify these two kind of
redundancy at the same time. The first step is to build a Sparse Feature Graph
(SFG) at feature side based on sparse representation concept from subspace
clustering theory [25]. Secondly, we review the quality of sparse representation
of each single feature vector and filtered out those failed ones. In the last, we
defined Local Compressible Subgraphs (LCS) to represent those local feature
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groups that are very redundant. Moreover, a greedy local search algorithm
is designed to discover all those LCSs. Once we have all LCSs, we pick the
feature which has the highest node in-degree as the representative feature and
treat all other as redundant features. With this approach, we obtain a new
data matrix with reduced size and alleviate the curse of dimensional issues.

To be specific, the contribution of this chapter can be highlighted as:

• We propose sparse feature graph to model the feature redundancy ex-
isting in high dimensional datasets. The sparse feature graph inherits
the philosophy of sparse learning based unsupervised feature selection
framework. The sparse feature graph not only records the redundancy
between two features but also show the redundancy between one feature
and a subset of features.

• We propose local compressible subgraph to represent redundant feature
groups. And also design a local greedy search algorithm to find all those
subgraphs.

• We reduce the dimensionality of input data and alleviate the curse of
dimensional issue through redundant features removal. With a more
accurate data structure, the chicken-and-egg problem for unsupervised
feature selection algorithms are remedied in certain level. One elegant
part of our proposed approach is to reduce the data dimension without
any pairwise distance calculation.

• Abundant experiments and analysis over twelve high dimensional
datasets from three different domains are also presented in this study.
The experiment results show that our method can obtain better data
structure with reduced size of dimensionality, and proof the effectiveness
of our proposed approach.

The rest of this chapter is organized as follows. The first section describe
the math notation used in our work. The Section 2 introduces the background
, motivation and preliminaries of our problem. In Section 3, we define the
problem we are going to solve. In Section 4, we present our proposed sparse
feature graph algorithm and discuss the sparse representation error problem.
We also introduce the local compressible subgraph and related algorithm. The
experiment results are reported in Section 5, and a briefly reviewing of related
works is given in Section 6. Finally, we conclude our work in last Section 7.
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7.2 Related Works

Remove redundant features is an important step for feature selection algo-
rithms. Prestigious works include [153] which gives a formal definition of
redundant features. Peng et al. [150] propose a greedy algorithm (named as
mRMR) to select features with minimum redundancy and maximum depen-
dency. Zhao et al. [155] develop an efficient spectral feature selection algo-
rithm to minimize the redundancy within the selected feature subset through
L2,1 norm. Recently, researchers pay attention to unsupervised feature se-
lection with global minimized redundancy [156] [157]. Several graph based
approaches are proposed in [158], [159]. The most closed research work to us
is [160] which build a sparse graph at feature side and ranking features by
approximation errors.

7.3 Background and Preliminaries

7.3.1 Unsupervised Feature Selection
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Figure 7.1: The framework of sparse learning based unsupervised feature se-
lection.

In unsupervised feature selection framework, we don’t have label infor-
mation to determine the feature relevance. Instead, the data similarity or
manifold structure constructed from the whole feature space are used as cri-
teria to select features. Among all those algorithms of unsupervised feature
selection, the most famous one is MCFS. The MCFS algorithm is a sparse
learning based unsupervised feature selection method which can be illustrated
as figure 7.1. The core idea of MCFS is to use the eigenvectors of graph Lapal-
cian over similarity graph as indication vectors. And then find set of features
that can approximate these eigenvectors through sparse linear regression. Let
us assume the input data has number K clusters that is known beforehand
(or an estimated K value by the expert’s domain knowledge). The top K
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non-trivial eigenvectors, Y = [y1, · · · ,yk], form the spectral embedding Y of
the data. Each row of Y is the new coordinate in the embedding space. To
select the relevant features, MCFS solves K sparse linear regression problems
between F and Y as:

min
αi

‖yi − Fαi‖2 + β‖αi‖1, (7.1)

where αi is a n-dimensional vector and it contains the combination coefficients
for different features fi in approximating yi. Once all coefficients αi are col-
lected, features will be ranked by the absolute value of these coefficients and
top features are selected. This can be show by a weighted directed bipartite
graph as following:

Eigenvector 
Feature vector 

f1

f2

fd

y1

y2

yk

Figure 7.2: Sparse learning bipartite graph for MCFS.

7.3.2 Adaptive Structure Learning for High Dimen-
sional Data

As we can seen, the MCFS uses whole features to model the structure of
data. That means the similarity graph such as Gaussian similarity graph
is built from all features. This is problematic when the dimension of data
vector goes higher. To be specific, the pairwise distance between any two
data vectors becomes almost the same, and as a consequence of that, the
obtained structural information of data is not accuracy. This observation
is the motivation of unsupervised Feature Selection with Adaptive Structure
Learning (FSASL) algorithm which is proposed by Du et al. [147]. The idea of
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Figure 7.3: Unsupervised Feature Selection with Adaptive Structure Learning.

FSASL is to repeat MCFS iteratively with updating selected feature sets. It
can be illustrated as following: FASAL is an iterative algorithms which keeps
pruning irrelevant and noisy features to obtain better manifold structure while
improved structural info can help to search better relevant features. FASAL
shows better performance in normalized mutual information and accuracy than
MCFS generally. However, it’s very time consuming since it is an iterative
algorithm includes many eigen-decompositions.

7.3.3 Redundant Features

For high dimensional data X ∈ Rn×d, it exists information redundancy among
features since d � n. Those redundant features can not provide further per-
formance improvement for ongoing learning task. Instead, they impair the
efficiency of learning algorithm to find intrinsic data structure.

In this section, we describe our definition of feature redundancy. Unlike
the feature redundancy defined bt Markov blanket [153] which is popular in
existing research works, our definition of feature redundancy is based on the
linear correlation between two vectors (the “vector” we used here could be a
feature vector or a linear combination of several feature vectors.) To measure
the redundancy between two vectors fi and fj, squared cosine similarity[156]
is used:

Rij = cos2(fi,fj). (7.2)

By the math definition of cosine similarity, it is straightforward to know that
a higher value of Ri,j means high redundancy existing between fi and fj. For
example, feature vector fi and its duplication fi will have Rii value equals to
one. And two orthogonal feature vectors will have redundancy value equals to
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zero.

7.4 Problem Statement

In this work, our goal is to detect those redundant features existing in high
dimensional data and obtain a more accurate intrinsic data structure. To be
specific:

Problem 5. Given a high dimensional data represented in the form of feature
matrix X, how to remove those redundant features f(·) ∈XT for unsupervised
feature selection algorithms such as MCFS?

Technically, the MCFS algorithm does not involve redundant features.
However, the performance of MCFS depends on the quality of indication vec-
tors which are used to select features via sparse learning. And those indication
vectors are highly related to the intrinsic structure of data which is described
by the selected features and given distance metric. For example, the MCFS
algorithm uses all features and Gaussian similarity to represent the intrin-
sic structure. This is the discussed ‘chicken-and-egg” problem [147] between
structure characterization and feature selection. The redundant and noise fea-
tures will lead to an inaccurate estimation of data structure. As a result, it’s
very demanding to remove those redundant (and noise) features before the
calculation of indication vectors.

7.5 Algorithm

In this section, we present our graph-based algorithm to detect and remove
redundant features existing in high dimensional data. First, the sparse feature
graph that modeling the redundancy among feature vectors will be introduced.
Secondly, the sparse representation error will be discussed. In the last, the local
compressible subgraph is proposed to extract redundant feature groups.

7.5.1 Sparse Feature Graph (SFG)

The most popular way to model the redundancy among feature vectors is
correlation such as Pearson Correlation Coefficient (PCC). The correlation
value is defined over two feature vectors, and it’s a pairwise measurement.
However, there also exiting redundancy between one feature vector and a set
of feature vectors according to the philosophy of MCFS algorithm. In this
section, we present SFG, which model the redundancy not only between two
feature vectors but also one feature vector and a set of feature vectors.
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The basic idea of sparse feature graph is to looking for a sparse linear
representation for each feature vector while using all other feature vectors as
dictionary. For each feature vector fi in features set F = [f1, f2, · · ·, fd],
SFG solves the following optimization problem:

min
α∈Rd−1

‖fi −Φiαi‖2
2, s.t. ‖αi‖0 < L, (7.3)

where Φi = [f1, f2, · · ·, fi−1, fi+1, · · ·, fd] is the dictionary of fi and each
column of Φi is a selected feature from data matrix X. L is a constraint to
limit the number of nonzero coefficients. In SFG, we set it to the number
of features d. The αi is the coefficient of each atom of dictionary Φi. This
coefficient vector not only decides the edge link to fi but also indicates the
weight of that connection. The resulted SFG is a weighted directed graph and
may have multiple components.

more  
nodes 

e1
e2

ek

Feature vector 
Eigenvector 

Sparse Feature Graph Indication Vectors 

Level 1 

Level 2 

Figure 7.4: Sparse feature graph and its relation with indication vectors. Level
1 features are direct sparse representation of those calculated indication vec-
tors. Level 2 features only have representation relationship with level 1 features
but not with indication vectors.

To solve the optimization problem 7.3, we use Orthogonal Matching Pur-
suit (OMP) solver [66] here since the number of features in our datasets is
larger than 1,000. We modify the stop criterion of OMP by checking the value
change of residual instead of residual itself or the maximum number of sup-
ports. The reason is that we want the number of supports (or say, the number
of edge connections) to follow the raw data property. Real world datasets are
always noisy and messy. It’s highly possible that several feature vectors may
fail to find a correct sparse linear representation through OMP. If we set resid-
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ual or maximum of supports as criteria, we can not differentiate the successful
representations and the failed ones.

The OMP solver and SFG algorithm can be described as following.

Algorithm 14: Orthogonal Matching Pursuit (OMP)

Input : Φ = [f1, f2, · · ·, fi−1, fi+1, · · ·, fd] ∈ Rn×(d−1),fi ∈ Rn, ε.
Output: Coefficient αi.

1 Initialize residual difference threshold r0 = 1.0, residual q0 = fi, support
set Γ0 = ∅, k = 1 ;

2 while k ≤ d− 1 and |rk − rk−1| > ε do
3 Search the atom which most reduces the objective:

4 j∗ = arg min
j∈ΓC

{
min
α
‖fi −ΦΓ∪{j}α‖2

2

}
;

5 Update the active set:
6 Γk = Γk−1 ∪ {j∗};
7 Update the residual (orthogonal projection):
8 qk = (I −ΦΓk

(ΦT
Γk

ΦΓk
)−1ΦT

Γk
)fi;

9 Update the coefficients:
10 αΓk

= (ΦT
Γk

ΦΓk
)−1ΦT

Γk
fi;

11 rk = ‖qk‖2
2 ;

12 k ← k + 1 ;

13 end

7.5.2 Sparse Representation Error

In our modified OMP algorithm 14, we set a new stop criterion of search-
ing sparse representation solution for each feature vector fi. Instead of keep
searching until arriving a minimization error, we stop running while the solver
could not reduce the length of residual vector anymore. To be specific, the
2-norm of residual vector is monitored and the solver will stop once the change
of this value small than a user specified threshold.

The reason we use this new stop criterion is that several feature vectors
may not find correct sparse representation in current dataset, and the ordi-
nary OMP solver will return a meaningless sparse representation when the
maximum iteration threshold arrived. Since the goal of SFG is not to find
a correct sparse representation for every feature vectors, we utilize the new
stop criterion and add a filter process in our algorithm to identify those failed
sparse representation.
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Algorithm 15: Sparse Feature Graph

Input : Data matrix F = [f1, f2, · · ·, fd] ∈ Rn×d;
Output: Adjacent matrix W of Graph G ∈ Rd×d;

1 Normalize each feature vector fi with ‖fi‖2
2 = 1;

2 for i = 1, · · · , d do
3 Compute αi from OMP(F−i,fi) using algorithm 14;
4 end
5 Set adjacent matrix Wij = αi(j) if i > j, Wij = αi(j − 1), if i < j and

Wij = 0 if i == j;

f1

fi

f2

f3

f4
f5

f7

f6

w1
w2

w3
w4

w5
w6

w7

Figure 7.5: Illustration of sparse representation error. SFG is a weighted
directed graph.

To identify those failed sparse representation, we check the angle between
the original vector and the linear combination of its sparse representation. In
the language of SFG, we check the angle between a node (a feature vector)
and the weighted combination of its one-ring neighbor. Only the neighbors of
out edges will be considered. This can be illustrated by following figure 7.5.
As the example in Figure 7.5, node fi has seven one-ring neighbors. But only

bmf1, bmf2,f3,f5,f6 are its sparse representation and f4 and f7 are not. Then
the sparse representation error ζ is calculated by:

f ∗i = w1f1 + w2f2 + w3f3 + w5f5 + w6f6,

ζ = arccos(fi,f
∗
i ).

Once we have the SFG, we calculate the sparse representation errors for all
nodes. A sparse representation is treated as fail if the angle ζ less than a user
specified value. We will filter out these node which has failed representation
by removing its out-edges.
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7.5.3 Local Compressible Subgraph

We group high correlated features through local compressible subgraphs. The
SFG G is a weighted directed graph. With this graph, we need to find all fea-
ture subsets that has very high redundancy. To archive this goal, we propose a
local search algorithm with seed nodes to group those highly correlated features
into many subgraphs which are named as local compressible subgraphs in this
chapter. Our local search algorithm involves two steps, the first step is to sort
all nodes by the in-degree. By the definition of SFG, the node with higher in-
degree means it appears more frequently in other nodes’ sparse representation.
The second step is a local bread-first search approach which finds all nodes
that has higher weight connections (in and out) to the growing subgraph. The
detail subgraph searching algorithm can be described by: In Alg. 16, function

Algorithm 16: Local Compressible Subgraphs.

Input : Weighted directed graph G = (V,E), edge weight threshold θ;
Output: Local compressible subgraphs C .

1 Tag all nodes with initial label 0;
2 Sort the nodes by its in-degree decreasingly;
3 current label = 1;
4 for n = 1 : |V | do
5 if label(n) ! = 0 then
6 continue;
7 end
8 set label of node n to current label;
9 BFS(n, θ, current label);

10 current label + = 1;

11 end
/* current label now has the maximum value of labels. */

12 for i = 1 : current label do
13 Extract subgraph ci which all nodes have label i;
14 if |ci| > 1 then
15 add ci to C;
16 end

17 end

label(n) check the current label of node n, and BFS(n, θ, current label) func-
tion runs a local Breadth-First search for subgraph that has edge weight large
than θ.
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7.5.4 Redundant Feature Removal

The last step of our algorithm is to remove the redundant features. For each
local compressible subgraph we found, we pick up the node which has the
highest in-degree as the representative node of that local compressible sub-
graph. So the number of final feature vectors equals to the number of local
compressible subgraphs.

7.6 Experiments

In this section, we present experimental results to demonstrate the effective-
ness of our proposed algorithm. We first evaluate the spectral clustering per-
formance before and after applying our algorithms. Secondly, we show the
performance of MCFS with or without our algorithm. In the last, the proper-
ties of generated sparse graphs and sensitivity of parameters are discussed.

7.6.1 Experiment Setup

Datasets. We select twelve real-world high dimensional datasets [161] from
three different domains: Image, Text and Biomedical. The detail of each
dataset is listed in Table 7.1. The datasets have sample size different from 96
to 8293 and feature size ranging from 1,024 to 18,933. Also, the datasets have
class labels from 2 to 64. The purpose of this selection is to let the evaluation
results be more general by applying datasets with various characteristics.

Name #Sample #Feature #Class Type

ORL 400 1024 40 Image
Yale 165 1024 15 Image
PIE10P 210 2420 10 Image
ORL10P 100 10304 10 Image
BASEHOCK 1993 4862 2 Text
RELATHE 1427 4322 2 Text
PCMAC 1943 3289 2 Text
Reuters 8293 18933 65 Text
lymphoma 96 4026 9 Biomedical
LUNG 203 3312 5 Biomedical
Carcinom 174 9182 11 Biomedical
CLL-SUB-111 111 11340 3 Biomedical

Table 7.1: High dimensional datasets.
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Normalization. The features of each dataset are normalized to have unit
length, which means ‖fi‖2 = 1 for all datasets.

Evaluation Metric. Our proposed algorithm is under the framework of un-
supervised learning. Without loss of generality, the cluster structure of data
is used for evaluation. To be specific, we measure the spectral clustering per-
formance with Normalized Mutual Information (NMI) and Accuracy (ACC).
NMI value ranges from 0.0 to 1.0, with higher value means better clustering
performance. ACC is another metric to evaluate the clustering performance
by measuring the fraction of its clustering result that are correct. Similar to
NMI, its values range from 0 to 1 and higher value indicates better algorithm
performance.

Suppose A is the clustering result and B is the known sample label vec-
tor. Let p(a) and p(b) denote the marginal probability mass function of A
and B, and let p(a, b) be the joint probability mass function of A and B.
Suppose H(A), H(B) and H(A,B) denote the entropy of p(a), p(b) and p(a, b)
respectively. Then the normalized mutual information NMI is defined as:

NMI(A,B) =
H(A) +H(B)−H(A,B)

max(H(A), H(B))
(7.4)

Assume A is the clustering result label vector, and B is the known ground
truth label vector, ACC is defined as:

ACC =

N∑
i=1

δ(B(i),Map(A,B)(i))

N
(7.5)

where N denotes the length of label vector, δ(a, b) equals to 1 if only if a and
b are equal. MapA,B is the best mapping function that permutes A to match
B.

7.6.2 Effectiveness of Redundant Features Removal

Our proposed algorithm removes many features to reduce the dimension size of
all data vectors. As a consequence, the pairwise Euclidean distance is changed
and the cluster structure will be affected. To measure the effectiveness of our
proposed algorithm, we check the spectral clustering performance before and
after redundant feature removal. If the NMI and ACC values are not changed
to much and stay in the same level, the experiment results show that our
proposed algorithm is correct and effective.
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Figure 7.6: Spectral clustering performance of image datasets with different
parameter θ. Top row: NMI; Middle row: ACC; Bottom row: number of
features, the red dash line means the size of raw dataset.

The spectral clustering algorithm we used in our experiments is the Ng-
Jordan-Weiss (NJW) algorithm [42]. The Gaussian similarity graph is applied
here as the input and parameter σ is set to the mean value of pairwise Eu-
clidean distance among all vectors.

Our proposed LCS algorithm includes a parameter θ which is the threshold
of redundancy. It decides the number of redundant features implicitly, and
affects the cluster structure of data consequently. In our experiment design,
we test different θ values ranging from 90% to 10% with step size equal to
10%: θ = [0.9, 0.8, 0.7, · · · , 0.1].

We present our experiment results for image datasets, text datasets, and bi-
ological datasets in Figure 7.6, Figure 7.7 and Figure 7.8 respectively. For each
dataset, we show the NMI, ACC performance with different θ and comparing
with original spectral clustering performance by using all features. From the
experimental results, we can read that: Even when θ is reduced to 30%,
the NMI and ACC values are staying in same level as original data.
When θ equals to 30%, it means the edges of SFG that with weights (absolute
value) in the highest 70% value range are removed. (It does not mean that 70%
of top weights edges are removed). This observation validate the correctness
of our proposed algorithm.
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Figure 7.7: Spectral clustering performance of text datasets with different
parameter θ. Top row: NMI; Middle row: ACC; Bottom row: number of
features, the red dash line means the size of raw dataset.
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Figure 7.8: Spectral clustering performance of biomedical datasets with dif-
ferent parameter θ. Top row: NMI; Middle row: ACC; Bottom row: number
of features, the red dash line means the size of raw dataset.
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7.6.3 Performance of MCFS

Our proposed algorithm is targeting for unsupervised feature selection. And
the quality of indication vectors (or the spectral clustering performance based
on eigenvectors) is an important factor evaluate the effectiveness of our pro-
posed algorithm. In this section, we evaluate the MCFS performance over
the redundant feature removed data, and comparing with the raw data that
without any feature removal.

The spectral clustering performance is measured for different input data
from original whole feature data to processed ones by our proposed algorithm
with different θ. We report the experiment results over image datasets and bi-
ological datasets in this section. For text datasets, the feature vectors of them
are very sparse, and our eigen decomposition process are always failed and we
only can collect partial results. For fair evaluation, we omit the experiment
results of text datasets in this work. The result of MCFS performance shows
from Table 7.2 to Table 7.17.

For each dataset, we set the number of selected features ranging from
[5, 10, 15, · · · , 60], which has 11 different sizes in total. The parameter θ is
configured from 0.9 to 0.1 with stepsize equals to 0.1.

We report the experimental results in tables (from Table 7.2 to Table 7.17).
For each table, the first row means the number of features that used as input of
MCFS. The first column is the number of selected features by MCFS algorithm.
The baseline is in the second column, which is the testing result of MCFS
algorithm with raw data. The hyphens in the tables means the number of
selected features is larger than the feature size of input data, which means
invalid test. To show the effectiveness of our algorithm, we also mark those
NMI and ACC scores that larger or equals to baseline in bold text.

7.6.4 Sparse Representation Errors

With the design of our modified OMP solvers, there will be failed/wrong sparse
representations existing in generated sparse feature graph. The meaning of
these edge connections and edge weights are invalid. And they should be
removed from the SFG since wrong connections will deteriorate the accuracy
of feature redundancy relationship. To validate the sparse representation,
we check the angle between original feature vector and the linear weighted
summation resulted vector (or recover signal from sparse coding point of view)
from its sparse representation. If the angle lower than a threshold, we remove
all out-edges from the generated sparse feature graph. To specify the threshold,
we learn it from the empirical results of our selected twelve datasets. The
distribution (or histogram) result of angle values is presented in figure 7.9.
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#f 1024 913 620 535 469 327 160 104 58 33

10 0.63 0.51 0.60 0.56 0.53 0.62 0.61 0.65 0.60 0.62
15 0.66 0.56 0.63 0.60 0.58 0.67 0.62 0.60 0.63 0.58
20 0.67 0.59 0.65 0.64 0.59 0.64 0.63 0.61 0.64 0.56
25 0.67 0.59 0.66 0.64 0.63 0.65 0.66 0.64 0.65 0.58
30 0.68 0.63 0.66 0.65 0.66 0.67 0.65 0.67 0.65 0.59
35 0.69 0.64 0.70 0.66 0.65 0.67 0.67 0.68 0.65 -
40 0.70 0.67 0.71 0.68 0.67 0.68 0.70 0.70 0.66 -
45 0.70 0.69 0.70 0.69 0.66 0.69 0.70 0.69 0.65 -
50 0.73 0.71 0.72 0.68 0.66 0.70 0.72 0.69 0.66 -
55 0.71 0.74 0.70 0.68 0.67 0.71 0.71 0.71 0.66 -
60 0.71 0.74 0.71 0.72 0.71 0.69 0.72 0.71 - -

Table 7.2: NMI results of “ORL”
dataset

#f 1024 913 620 535 469 327 160 104 58 33

10 0.38 0.28 0.36 0.31 0.28 0.39 0.39 0.46 0.39 0.41
15 0.45 0.33 0.41 0.40 0.34 0.43 0.40 0.38 0.42 0.36
20 0.47 0.34 0.43 0.43 0.35 0.43 0.41 0.39 0.43 0.32
25 0.48 0.35 0.45 0.44 0.37 0.42 0.47 0.41 0.45 0.34
30 0.47 0.40 0.42 0.42 0.43 0.47 0.43 0.45 0.42 0.35
35 0.49 0.41 0.48 0.46 0.44 0.44 0.47 0.47 0.42 -
40 0.51 0.46 0.53 0.48 0.46 0.45 0.48 0.51 0.43 -
45 0.49 0.47 0.51 0.51 0.44 0.48 0.49 0.49 0.43 -
50 0.55 0.51 0.52 0.47 0.47 0.50 0.52 0.48 0.46 -
55 0.53 0.53 0.51 0.46 0.45 0.48 0.50 0.53 0.46 -
60 0.51 0.55 0.52 0.54 0.51 0.47 0.54 0.51 - -

Table 7.3: ACC results of “ORL”
dataset.

#f 1024 1023 964 654 525 427 271 152 83 34

10 0.48 0.43 0.43 0.45 0.42 0.46 0.45 0.46 0.47 0.44
15 0.49 0.47 0.46 0.51 0.49 0.48 0.45 0.47 0.50 0.43
20 0.49 0.48 0.46 0.55 0.48 0.51 0.47 0.47 0.51 0.41
25 0.51 0.49 0.49 0.52 0.52 0.52 0.45 0.49 0.54 0.41
30 0.51 0.51 0.49 0.54 0.50 0.51 0.51 0.49 0.50 0.39
35 0.53 0.49 0.50 0.54 0.53 0.52 0.52 0.48 0.50 -
40 0.49 0.50 0.51 0.53 0.58 0.55 0.55 0.48 0.51 -
45 0.48 0.51 0.51 0.56 0.59 0.57 0.52 0.52 0.49 -
50 0.52 0.50 0.47 0.53 0.59 0.53 0.53 0.56 0.49 -
55 0.54 0.51 0.52 0.55 0.50 0.51 0.51 0.51 0.49 -
60 0.54 0.49 0.51 0.49 0.54 0.50 0.51 0.46 0.52 -

Table 7.4: NMI results of “Yale”
dataset

#f 1024 1023 964 654 525 427 271 152 83 34

10 0.39 0.36 0.37 0.36 0.33 0.38 0.41 0.40 0.41 0.36
15 0.43 0.41 0.42 0.44 0.41 0.41 0.39 0.41 0.46 0.39
20 0.44 0.42 0.41 0.48 0.44 0.44 0.43 0.42 0.44 0.35
25 0.45 0.45 0.44 0.46 0.47 0.45 0.41 0.43 0.49 0.33
30 0.48 0.44 0.42 0.47 0.47 0.45 0.45 0.40 0.47 0.33
35 0.48 0.48 0.44 0.50 0.47 0.46 0.47 0.41 0.44 -
40 0.42 0.44 0.45 0.50 0.55 0.48 0.53 0.41 0.44 -
45 0.41 0.48 0.46 0.51 0.53 0.54 0.49 0.47 0.42 -
50 0.46 0.41 0.42 0.48 0.56 0.50 0.46 0.52 0.41 -
55 0.48 0.44 0.48 0.48 0.43 0.45 0.49 0.47 0.42 -
60 0.50 0.42 0.44 0.40 0.50 0.41 0.46 0.42 0.43 -

Table 7.5: ACC results of “Yale”
dataset.

#f 2420 2409 1871 793 698 662 654 630 566 324

10 0.44 0.48 0.55 0.53 0.58 0.56 0.54 0.61 0.50 0.38
15 0.44 0.61 0.57 0.50 0.58 0.58 0.55 0.59 0.53 0.39
20 0.43 0.56 0.61 0.59 0.60 0.56 0.62 0.59 0.56 0.41
25 0.52 0.61 0.61 0.64 0.61 0.60 0.58 0.58 0.54 0.43
30 0.53 0.61 0.62 0.57 0.62 0.62 0.60 0.53 0.63 0.41
35 0.59 0.60 0.59 0.60 0.63 0.61 0.60 0.62 0.64 0.43
40 0.53 0.60 0.58 0.57 0.66 0.62 0.59 0.62 0.69 0.42
45 0.55 0.61 0.61 0.62 0.60 0.64 0.60 0.64 0.65 0.43
50 0.56 0.63 0.62 0.68 0.64 0.62 0.58 0.63 0.66 0.37
55 0.61 0.60 0.62 0.69 0.62 0.60 0.57 0.65 0.58 0.39
60 0.55 0.64 0.63 0.64 0.60 0.63 0.54 0.63 0.51 0.39

Table 7.6: NMI results of “PIE10P”
dataset

#f 2420 2409 1871 793 698 662 654 630 566 324

10 0.39 0.45 0.48 0.50 0.56 0.50 0.53 0.59 0.46 0.39
15 0.39 0.58 0.51 0.49 0.51 0.55 0.56 0.60 0.50 0.41
20 0.36 0.51 0.53 0.53 0.55 0.56 0.60 0.54 0.50 0.38
25 0.45 0.59 0.53 0.60 0.54 0.59 0.60 0.56 0.52 0.40
30 0.50 0.58 0.56 0.58 0.59 0.60 0.59 0.49 0.60 0.40
35 0.48 0.57 0.51 0.59 0.61 0.53 0.54 0.62 0.61 0.37
40 0.42 0.52 0.53 0.56 0.63 0.59 0.53 0.60 0.64 0.38
45 0.44 0.52 0.52 0.58 0.51 0.63 0.54 0.62 0.60 0.41
50 0.44 0.61 0.52 0.64 0.60 0.59 0.55 0.62 0.61 0.37
55 0.46 0.54 0.53 0.67 0.58 0.57 0.57 0.63 0.54 0.37
60 0.49 0.60 0.61 0.61 0.57 0.61 0.51 0.61 0.46 0.35

Table 7.7: ACC results of “PIE10P”
dataset.

#f 10304 10302 8503 3803 3408 3244 3030 2822 2638 2175

10 0.65 0.78 0.77 0.76 0.77 0.80 0.74 0.72 0.75 0.73
15 0.72 0.82 0.79 0.78 0.81 0.83 0.79 0.81 0.75 0.79
20 0.76 0.81 0.74 0.78 0.84 0.83 0.81 0.76 0.80 0.78
25 0.79 0.84 0.74 0.73 0.82 0.86 0.88 0.83 0.86 0.81
30 0.75 0.77 0.82 0.74 0.88 0.82 0.83 0.83 0.86 0.86
35 0.81 0.81 0.80 0.83 0.85 0.83 0.80 0.82 0.85 0.85
40 0.83 0.88 0.84 0.84 0.90 0.86 0.81 0.93 0.84 0.87
45 0.84 0.93 0.83 0.85 0.91 0.86 0.83 0.88 0.84 0.86
50 0.78 0.88 0.88 0.87 0.89 0.86 0.82 0.90 0.84 0.83
55 0.84 0.89 0.86 0.89 0.91 0.89 0.88 0.86 0.84 0.86
60 0.85 0.88 0.86 0.84 0.85 0.91 0.85 0.88 0.86 0.85

Table 7.8: NMI results of “ORL10P”
dataset

#f 10304 10302 8503 3803 3408 3244 3030 2822 2638 2175

10 0.66 0.74 0.81 0.75 0.75 0.69 0.72 0.70 0.69 0.67
15 0.69 0.85 0.76 0.78 0.78 0.86 0.80 0.75 0.73 0.75
20 0.77 0.84 0.74 0.76 0.80 0.80 0.78 0.69 0.75 0.74
25 0.71 0.79 0.68 0.74 0.78 0.86 0.84 0.82 0.82 0.74
30 0.71 0.71 0.77 0.68 0.86 0.77 0.81 0.77 0.82 0.81
35 0.74 0.74 0.74 0.76 0.81 0.77 0.73 0.76 0.82 0.78
40 0.80 0.85 0.74 0.77 0.87 0.80 0.75 0.89 0.80 0.83
45 0.82 0.89 0.73 0.81 0.88 0.78 0.77 0.86 0.80 0.79
50 0.73 0.80 0.80 0.74 0.86 0.79 0.74 0.88 0.81 0.77
55 0.79 0.85 0.82 0.86 0.89 0.87 0.80 0.82 0.81 0.79
60 0.82 0.84 0.77 0.75 0.82 0.89 0.77 0.84 0.82 0.82

Table 7.9: ACC results of “ORL10P”
dataset.
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#f 4026 4009 3978 3899 3737 3456 2671 1203 334 136

10 0.51 0.59 0.58 0.52 0.50 0.50 0.51 0.50 0.50 0.49
15 0.55 0.60 0.62 0.56 0.58 0.58 0.58 0.56 0.47 0.52
20 0.60 0.61 0.60 0.57 0.62 0.62 0.64 0.58 0.58 0.60
25 0.63 0.59 0.64 0.60 0.63 0.58 0.66 0.57 0.56 0.53
30 0.59 0.61 0.62 0.60 0.62 0.64 0.65 0.60 0.60 0.59
35 0.61 0.66 0.62 0.60 0.65 0.62 0.61 0.62 0.56 0.53
40 0.64 0.60 0.66 0.63 0.61 0.63 0.66 0.61 0.58 0.55
45 0.58 0.63 0.62 0.62 0.58 0.61 0.63 0.64 0.60 0.57
50 0.65 0.60 0.61 0.61 0.56 0.63 0.61 0.63 0.58 0.54
55 0.63 0.60 0.61 0.62 0.60 0.60 0.63 0.60 0.58 0.58
60 0.60 0.60 0.63 0.61 0.63 0.59 0.65 0.59 0.57 0.57

Table 7.10: NMI results of “Lym-
phoma” dataset

#f 4026 4009 3978 3899 3737 3456 2671 1203 334 136

10 0.50 0.57 0.56 0.53 0.49 0.51 0.51 0.48 0.50 0.50
15 0.53 0.62 0.59 0.58 0.56 0.59 0.58 0.55 0.50 0.53
20 0.59 0.56 0.55 0.56 0.56 0.59 0.59 0.54 0.55 0.59
25 0.60 0.57 0.62 0.56 0.62 0.58 0.64 0.56 0.52 0.50
30 0.56 0.60 0.58 0.58 0.59 0.61 0.65 0.59 0.57 0.55
35 0.55 0.62 0.59 0.58 0.61 0.60 0.57 0.59 0.55 0.53
40 0.66 0.57 0.61 0.61 0.61 0.59 0.60 0.58 0.59 0.54
45 0.54 0.60 0.60 0.58 0.55 0.60 0.62 0.59 0.56 0.54
50 0.65 0.62 0.58 0.64 0.52 0.59 0.56 0.59 0.53 0.53
55 0.57 0.60 0.65 0.60 0.54 0.57 0.65 0.59 0.54 0.59
60 0.56 0.58 0.64 0.58 0.61 0.57 0.67 0.56 0.53 0.57

Table 7.11: ACC results of “Lym-
phoma” dataset.

#f 3312 3311 3309 3236 1844 559 384 344 305 183

10 0.42 0.42 0.43 0.49 0.52 0.53 0.43 0.46 0.43 0.25
15 0.54 0.54 0.53 0.51 0.51 0.51 0.45 0.52 0.38 0.21
20 0.51 0.51 0.52 0.53 0.41 0.49 0.36 0.52 0.38 0.20
25 0.51 0.51 0.53 0.48 0.42 0.52 0.40 0.48 0.35 0.26
30 0.47 0.48 0.52 0.49 0.41 0.37 0.49 0.48 0.41 0.24
35 0.46 0.38 0.46 0.48 0.39 0.52 0.49 0.38 0.35 0.27
40 0.49 0.49 0.50 0.46 0.43 0.40 0.38 0.35 0.40 0.29
45 0.36 0.42 0.33 0.47 0.40 0.33 0.38 0.35 0.35 0.31
50 0.45 0.45 0.47 0.49 0.52 0.32 0.40 0.36 0.35 0.31
55 0.44 0.44 0.44 0.49 0.51 0.33 0.49 0.31 0.30 0.31
60 0.47 0.46 0.45 0.51 0.49 0.33 0.39 0.32 0.31 0.35

Table 7.12: NMI results of “LUNG”
dataset

#f 3312 3311 3309 3236 1844 559 384 344 305 183

10 0.71 0.72 0.73 0.77 0.77 0.75 0.68 0.65 0.66 0.56
15 0.81 0.81 0.79 0.72 0.73 0.72 0.67 0.65 0.58 0.48
20 0.71 0.73 0.74 0.72 0.69 0.69 0.61 0.60 0.58 0.39
25 0.71 0.71 0.74 0.67 0.69 0.68 0.59 0.61 0.56 0.49
30 0.66 0.66 0.67 0.71 0.68 0.56 0.59 0.59 0.61 0.43
35 0.64 0.60 0.63 0.68 0.66 0.60 0.58 0.56 0.53 0.49
40 0.65 0.65 0.66 0.65 0.64 0.57 0.54 0.54 0.56 0.46
45 0.60 0.63 0.57 0.65 0.61 0.52 0.54 0.52 0.52 0.49
50 0.65 0.65 0.63 0.65 0.65 0.48 0.57 0.53 0.53 0.52
55 0.61 0.61 0.59 0.65 0.62 0.48 0.59 0.48 0.49 0.49
60 0.64 0.63 0.63 0.64 0.62 0.51 0.55 0.49 0.48 0.51

Table 7.13: ACC results of “LUNG”
dataset.

#f 9182 9180 9179 9150 7736 3072 697 449 360 144

10 0.70 0.70 0.70 0.69 0.67 0.64 0.66 0.65 0.66 0.47
15 0.71 0.70 0.73 0.73 0.74 0.66 0.67 0.70 0.66 0.52
20 0.77 0.78 0.77 0.72 0.75 0.72 0.73 0.71 0.73 0.54
25 0.74 0.77 0.77 0.75 0.74 0.71 0.79 0.75 0.74 0.53
30 0.69 0.71 0.72 0.70 0.74 0.75 0.77 0.79 0.73 0.54
35 0.77 0.76 0.76 0.76 0.74 0.77 0.78 0.78 0.78 0.60
40 0.75 0.74 0.76 0.77 0.74 0.79 0.76 0.78 0.75 0.59
45 0.77 0.76 0.74 0.78 0.74 0.82 0.78 0.80 0.79 0.57
50 0.79 0.76 0.75 0.75 0.79 0.76 0.79 0.84 0.83 0.58
55 0.75 0.76 0.76 0.74 0.75 0.79 0.79 0.83 0.83 0.59
60 0.74 0.72 0.76 0.73 0.76 0.82 0.84 0.82 0.78 0.62

Table 7.14: NMI results of “Carci-
nom” dataset

#f 9182 9180 9179 9150 7736 3072 697 449 360 144

10 0.63 0.66 0.62 0.61 0.67 0.60 0.60 0.59 0.64 0.48
15 0.67 0.57 0.70 0.66 0.68 0.63 0.57 0.67 0.64 0.53
20 0.70 0.68 0.74 0.66 0.71 0.71 0.64 0.73 0.74 0.56
25 0.70 0.72 0.75 0.69 0.75 0.64 0.75 0.72 0.76 0.51
30 0.61 0.64 0.70 0.69 0.67 0.71 0.74 0.76 0.71 0.52
35 0.76 0.74 0.74 0.74 0.70 0.75 0.70 0.76 0.77 0.57
40 0.72 0.72 0.73 0.75 0.69 0.76 0.66 0.78 0.71 0.56
45 0.75 0.74 0.70 0.75 0.74 0.79 0.72 0.79 0.76 0.55
50 0.74 0.74 0.70 0.72 0.74 0.66 0.74 0.83 0.79 0.56
55 0.73 0.74 0.74 0.72 0.71 0.72 0.72 0.82 0.80 0.56
60 0.70 0.61 0.71 0.66 0.72 0.75 0.82 0.80 0.77 0.55

Table 7.15: ACC results of “Carci-
nom” dataset.

#f 11340 11335 11301 10573 8238 7053 6697 6533 6180 4396

10 0.16 0.16 0.15 0.26 0.18 0.22 0.20 0.20 0.20 0.21
15 0.14 0.14 0.15 0.26 0.18 0.28 0.09 0.24 0.07 0.06
20 0.16 0.16 0.15 0.08 0.14 0.21 0.04 0.31 0.16 0.11
25 0.14 0.14 0.15 0.09 0.08 0.22 0.23 0.10 0.09 0.11
30 0.13 0.13 0.13 0.08 0.07 0.18 0.03 0.14 0.10 0.11
35 0.17 0.17 0.13 0.03 0.07 0.12 0.10 0.01 0.08 0.10
40 0.14 0.14 0.14 0.07 0.08 0.13 0.12 0.05 0.14 0.09
45 0.09 0.09 0.18 0.08 0.11 0.10 0.13 0.07 0.12 0.09
50 0.15 0.14 0.15 0.08 0.11 0.11 0.12 0.12 0.13 0.09
55 0.15 0.15 0.14 0.21 0.08 0.13 0.13 0.12 0.13 0.07
60 0.10 0.10 0.14 0.15 0.08 0.10 0.12 0.12 0.14 0.07

Table 7.16: NMI results of “CLL-
SUB-111” dataset

#f 11340 11335 11301 10573 8238 7053 6697 6533 6180 4396

10 0.51 0.51 0.50 0.54 0.59 0.57 0.58 0.55 0.51 0.50
15 0.51 0.51 0.50 0.57 0.55 0.62 0.47 0.59 0.45 0.43
20 0.50 0.50 0.48 0.46 0.50 0.54 0.40 0.59 0.54 0.50
25 0.48 0.48 0.51 0.44 0.46 0.54 0.57 0.50 0.46 0.50
30 0.49 0.49 0.49 0.44 0.44 0.53 0.42 0.51 0.48 0.48
35 0.51 0.51 0.49 0.42 0.44 0.49 0.49 0.41 0.44 0.48
40 0.51 0.51 0.50 0.43 0.45 0.50 0.49 0.43 0.48 0.47
45 0.46 0.45 0.52 0.44 0.46 0.47 0.51 0.45 0.47 0.47
50 0.51 0.50 0.51 0.45 0.46 0.50 0.49 0.49 0.49 0.48
55 0.49 0.49 0.50 0.54 0.46 0.50 0.50 0.49 0.49 0.45
60 0.49 0.49 0.50 0.53 0.43 0.48 0.49 0.49 0.50 0.44

Table 7.17: ACC results of “CLL-
SUB-111” dataset.

7.7 Chapter Summary

In this chapter, we propose sparse feature graph to model both one-to-one
feature redundancy and one-to-many features redundancy. By separate whole
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Figure 7.9: The distribution of angle between original feature vector and its
sparse representation.

features into different redundancy feature group through local compressible
subgraphs, we reduce the dimensionality of data by only select one represen-
tative feature from each group. One advantage of our algorithm is that it
does not need to calculate the pairwise distance which is always not accurate
for high dimensional datasets. The experiment results shows that our algo-
rithm is an effective way to obtain accurate data structure information which
is demanding for unsupervised feature selection algorithms.
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Chapter 8

Capturing Properties of Names
with Distributed
Representations

In this chapter, we introduce the technique of distributed name embeddings,
which represents names in a vector space such that the distance between name
components reflects the degree of cultural similarity between them. We pro-
pose approaches to constructing such name embeddings using large volume of
Email contact lists that record the human communication patterns and so-
cializing preferences. We evaluate the cultural coherence of such embeddings,
and demonstrate that they strongly capture gender and ethnicity information
encoded in names. Finally, we propose two applications of the name embed-
dings, including a fake-contact generation process for security login challenges,
and a large-scale look-alike names construction algorithm. Both applications
generation names that respect cultural coherence and name popularity.

8.1 Chapter Introduction

Names are important. The names that people carry with them are arguably
the strongest single facet of their identity. Names convey cues to people’s
gender, ethnicity, and family history. Hyphenated last names suggest possible
marital relationships. Names even encode information about age, as social
trends alter the popularity of given names.

In this chapter, we propose distributed name embeddings as a way to cap-
ture the cultural coherence properties of human names, such as gender and
ethnicity. Our distributed name embeddings are trained on a real-world Email
contact lists dataset which contains millions of “who-contact-who” records.
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Male names 1th NN 2nd NN 3rd NN 4th NN 5th NN Female names 1th NN 2nd NN 3rd NN 4th NN 5th NN
Andy Andrew Ben Chris Brian Steve Adrienne Allison Aimee Amber Debra Amy
Dario Pablo Santiago Federico Hernan Diego Aisha Aliyah Nadiyah Khadijah Akil Aliya
Elijah Isaiah Joshua Jeremiah Bryant Brandon Brianna Brittany Briana Samantha Jessica Christina
Felipe Rodrigo Rafael Eduardo Fernando Ricardo Candy Connie Becky Angie Cindy Christy
Heath Brent Chad Brad Brett Clint Chan Wong Poon Ho Wai Yip
Hilton Xooma Eccie Erau Plexus Gapbuster Cheyenne Destiny Madison Brittany Taylor Kayla
Isaac Samuel Israel Eli Esther Benjamin Dominque Renarda Lakenya Lakia Lashawna Shatara
Jamal Jameel Kareem Anmar Khalifa Nadiyah Ebonie Lakeshia Tomeka Ebony Latasha Shelonda
Lamar Terrell Derrick Eboni Tyree Willie Florida Fairfield Integrity Beacon Southside Missouri
Mohammad Shahed Mohmmad Ahmad Rifaat Farishta Gabriella Daniella Vanessa Marilisa Isabella Elisa
Moshe Yisroel Avraham Gitty Rivky Zahava Giovanna Giovanni Elisa Paola Giuliana Mariangela
Rocco Vito Salvatore Vincenza Pasquale Nunzio Han Jin Yong Sung Huan Teng
Salvatore Pasquale Nunzio Gennaro Vito Tommaso Kazuko Keisuke Junko Yumi Yuka Tomoko
Thanh Minh Thuy Thao Ngoc Khanh Keren Ranit Galit Haim Zeev Rochel

Table 8.1: The five nearest neighbors (NN) of representative male and female
names in embedding space, showing how they preserve associations among
Asian (Chinese, Korean, Japanese, Vietnamese), British, European (Span-
ish, Italian), Middle Eastern (Arabic, Hebrew), North American (African-
American, Native American, Contemporary), and Corporate/Entity.

Each contact list encodes a particular individual’s communicating customs
and social interaction patterns.

Our key insight is that people tend to communicate more with people
of similar cultural background and gender. Therefore if we embed names
in the vector space so that the distance between names parts reflects the
co-occurrence frequency, this embedding should capture aspects of culture
and gender. Inspired by recent research advances in distributed word em-
beddings [162], we demonstrate the utility of name embeddings as convenient
features to encode social/cultural information for classification tasks and other
applications.

Table 8.1 illustrates the power of our distributed name embeddings, by
presenting the five nearest-neighbors to a representative collection of male
and female first names. These neighbors overwhelmingly preseve the gender
and ethnicity of their center, capturing these properties without any labeled
training data.

The major contributions of our work are:

• Gender, ethnicity, and frequency preservation through name embeddings
– Through computational experiments involving ground truth data from
the U.S. Census and Social Security Administration, we show that our
name embeddings preserve such properties as gender and racial demo-
graphics for popular names and industrial sector for corporate contacts.
Even more surprisingly, our embeddings preserve frequency of occur-
rence, a property that to the best of our knowledge has never been
previously recognized in the distributed word embedding community.

• Ethnic/gender homophily in email correspondence patterns – Through
large-scale analysis of contact lists, we establish that there is greater
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than expected concentration of names of the same gender and race for
all major groupings under study. We also establish that longer contact
lists contain smaller concentrations of men, suggesting that women have
larger correspondence circles than men.

• Applications of name embeddings – That names serve as people’s primary
societal identifier gives them power. Privacy requirements often make
it undesirable or even illegal to publish people’s names without their
express permission. Yet there are often technical contexts where we need
names which can be shared to represent things: to serve as placeholders
in databases, demonstrations, and scientific studies.

We employ name embeddings two different anonymization tasks in pri-
vacy and security applications: replacement names and de novo name
generation. To preserve privacy, it is often desired to generate a re-
placement name for a given person. However when replacing names
to anonymize (say) a medical study, dissonance is created when female
names are replaced by male ones, and the names of elderly patients
aliased by newly coined names. Generating names at random from com-
ponent first/last name parts will not respect gender, ethnicity, or tem-
poral biases: consider the implausibility of names like “Wei Hernandez”
or “Roberto Chen”. Name embeddings enable us to capture these cul-
tural properties to generate meaningful replacements. We propose a
new technique of representing the semantics of first/last names through
distributed name embeddings. By training on millions of email contact
lists, our embeddings establish cultural locality among first names, last
names, and the linkages between them, as illustrated by examples in
Table 8.1. Through nearest neighbor analysis in embeddings space, we
can construct replacement aliases for any given name which preserve this
cultural locality.

The outline of this chapter is as follows. Section 8.3 presents our approach
to constructing name embeddings, including an evaluation of different ap-
proaches. Section 8.4 establishes that name embeddings preserve information
concerning gender, ethnicity, and even frequency. In Section 8.6, we propose
two applications: (1) a security login challenge application with our look-alike
names, and (2) an efficient de novo look-alike names generation algorithm.
Section 8.2 reviews related work. We conclude in Section 8.7 with discussions
on remaining challenges.

109



JOHN

DAVID

APPLE

EBAY

MICHAEL

JENNIFER

MARY

MICROSOFT

MARIA

MIKE

CHRIS

LISA

MARK

ROBERT

JAMES

KAREN LINDA

ANA

FACEBOOK

MICHELLE

DANIEL

BRIAN

LAURA

AMY

PAUL

THE

JESSICA

STEVE

SUSAN

CARLOS

JIM

AMANDA

SARAH

KEVIN

JOSE

RICHARD

SCOTT

JASON

BILL

JEFF

NANCY

MELISSA

JOE

KIM

PATRICIA

ALEX

BARBARA

JULIE

ANGELA

ANDREA

TOM

STEPHANIE

ERIC

ELIZABETH

SANDRA

ASHLEY

KELLY

BOB

PROGRESSIVE

CAROL

KATHY

JUAN

ANDREW

DAVE

DAN

DONNA

LUIS

WILLIAM

HEATHER

NICOLE

CAPITAL

TIM

MATT

SHARON
DEBBIE

PETER

SOUTHWEST

CINDY

RYAN

CHRISTINE

ANTHONY

GARY

ADAM

WELLS

THOMAS

JORGE

SAMSUNG

ADRIANA

JOSEPH

BRENDA

DIANA

DIANE

CHARLES

SONY

CLAUDIA

ANN

DENISE

GREG

BANK

GEORGE

ANNA

TONY

RACHEL

MATTHEW

MONICA

REBECCA

OLXCOMBR

EMILY

PAT

CHRISTOPHER

FRANK

JUDY

KIMBERLY

PATRICKLARRY

SUE

ANNE

SARA

CHERYL

LORI

KATIE

AARON

PAULA

JANET

STEVEN

RICK

BETH

DON

JEAN

CHRISTINA

STEPHEN

CYNTHIA

JONATHAN

KOHLS

DANIELLE

FERNANDO

RON

LAUREN

ALAN

WENDY

KEN

VICTORIAS

JANE

TINA

DEBORAH

TERRY

JUSTIN

RICARDO

VANESSA

JAMIE

BEN

CATHY

ALI

NICK

ERIN

TERESA

ANDY

MEGAN

DAWN

DENNIS

SHANNON

JERRY

NEW

TRACY

EDUARDO

KEITH

VICTOR

PAM

CAROLYN

ANTONIO

ROBIN

PAMELA

ALICIA

CARMEN

SANDY

TAMMY

AMBER

MARIE

JACKIE

JILL

PROCTER

BRANDON

JENNY

BRONTO

JACK

MARTHA

BARNES

MARTIN

SAM

JAY

ROB

CATHERINE

MICHELE

CRAIG

LYNN

DOUG

BATH

TIFFANY

SEAN

BECKY

JOSH

JOYCE

ED

CARLA

BRAD

MIGUEL

ANGIE

KATHLEEN

MARIO

RAFAEL

DANA

ADRIAN

SAMANTHA

LEE

CRISTINA

RANDY

GLORIA

MARGARET

CUSTOMER

TARGET

ROBERTO

LESLIE

MARCELO

ALEJANDRO

TODD

CRYSTAL

BETTY

BRUCE

AHMED

JON

JULIA

VERONICA

JOS

JOAN

DEBRA

ELAINE

FRANCISCO

HELEN

JEREMY

JAN

VICTORIA

REPLY

ERICA

ADT

CONNIE

RUTH

MY

PUBLISHERS

LIZ

BRYAN

GINA

GABRIEL

ROGER

ANGEL

DIEGO

SERGIO

GUSTAVO

RODRIGO

JOSHUA

PEDRO

ROSE

CHRISTIAN

MELANIE

GABRIELA

RAY

APRIL

BRITTANY

ANITA

KYLE

SHEILA

ALLISON

AUNT

RENEE

KATE

JANICE

JEFFREY

OSCAR

CAROLINA

NATALIE

ALICE

AL

EDWARD

KRISTEN

SHIRLEY

JOEL

CAROLINE

SHAWN

COURTNEY

RITA

FRED

CARRIE

VALERIE

ERIKA

DANIELA

KATHERINE

JAVIER

THERESA

BLACKBERRY

ALEXANDRA

MARCIA

SILVIA

CHAD

BONNIE

PAULO

ANDRE

ALBERTO

HOLLY

MARCOS

JOANNE

AMERICAN

ELLEN

MARA

BANCO

MARCO

SONIA

MARIANA

LAURIE

JACQUELINE

DANNY

SUZANNE

KRISTIN

KENNETH

TARA

GAIL

SHERRY

PABLO

MARILYN

WAYNE

JULIO

DONALD

STACY

GRACE

FERNANDA

MOHAMED

MARC

OFFICE

TIMOTHY

JAIME

STACEY

JULIANA

PEGGY

BRUNO

ROSA

CHUCK

JUSTFAB

NATHAN

MANUEL

JEN
TERRI

JOY

HENRY

SAMUEL

ALEJANDRA

RHONDA

DOUGLAS

RONALD

PHILCARL

ALINE

MOM

COLLEEN

WESTERN

IAN

PATTY

HEIDI

BEVERLY

SALLY

ALISON

DISCOVER

MEREDITH

GOOGLE

VERIZON

ADIDAS

REGINA

JORDAN

TYLER

CESAR

ALEXANDRE

ANNIE

VICKI

ALEXIS

CECILIA

BARB

EMMA

DEB

ALEXANDER

SEARS

NORMA

JIMMY

MAUREEN

BARRY

WALTER

ELENA

DALE

ATT

RICH

JUDITH

IVAN

KARLA

JACOB

BENJAMIN

LUCAS

DEREK

GROUPON

BOBBY

ANNETTE

FELIPE

GREGORY

KATHRYN

CHRISTY

LEONARDO

HECTOR

TAYLOR

NICHOLAS

TWITTER

EVELYN

SLM

MESSAGE

JESSE

HANNAH

VIRGINIA

MARINA

ALLEN

DISNEY

LUIZ

GREAT

CHARLIE

FEDLOAN

IRENE

CLAIRE

SABRINA

KARINA

TANYA

MUHAMMAD

OMAR

NATALIA

ABDUL

KAY

JESUS

CHARLOTTE

LINDSAY

PHILIP

CAMILA

BILLY

ANDRES

TRAVIS

EVA

DEAN

ALBERT

LUCIANA

RAQUEL

YVONNE
SYLVIA

QUICKEN

BRETT

JO

TAMARA

RENATA

MAURICIO

YOLANDA

CHELSEA

LUCY

BRENT

RAUL

AUDREY

MARCELA

ISABEL

EILEEN

EDDIE

LORENA

RAYMOND

ATENDIMENTO

GLENN

NIKKI

MIRIAM

CASEY

TRACEY

ANDERSON

LEAH

VINCENT

DOROTHY

DARLENE

GUILLERMO

ROY

PETE

LINDSEY

MOHAMMED

FABIO

SHANE

MONIQUE

KRIS

JEANNE

LOUISE

SIMONE

MARCUS

MARTA

AARP

ALFREDO

BEATRIZ

LILIANA

WILL

CLAUDIO

TONI

SIMON

KAYLA

TED

OLGA

JOHNNY

DORIS

ESTHER

BIG

HUGO

LUZ

MAGGIE

CRISTIAN

VIKING

BROOKE

NEIL

US

EDGAR

PASTOR

WANDA

PATTI

DEE

ALYSSA

KRISTINA

SHELLY

NELSON

LEANDRO

KAISER

ANGELICA

OLIVIA

AHMAD

JAKE

MOLLY

ENRIQUE

ERIK

MARLENE

TRAVEL

TOMMY

NINA

HARRY

MOHAMMAD

TIA

JOO

ALLAN

ROBERTA

NATASHA

TROY

ARTHUR

RALPH

EMAIL

PAOLA

JOANNA

TONYA

VIVIAN

AUSTIN

ABBY

THIAGO

PHYLLIS

DEANNA

EDWIN

HANES

LETICIA

MORGAN

AUTO

KERRY

JOANN

MELINDA

JODI

MAX

COREY

ANDR

JASMINE

KRISTI

CAROLE

HOTELSCOM

FEDERAL

HR
LA

RUSSELL

BIANCA

RUBEN

GENE

SUSANA

HOME

PENNY

HOWARD

ARMANDO

NEWSMAX

TATIANA

LOUIS

TANIA

RENE

PHILLIP
ART

ALESSANDRA

FRANCIS

JARED

GERALD

LEO

MERCADO

BRUNA

DIANNE

LUKE

MANDY

LUCIA

CVS

LORRAINE

KENNY

INGRID

DARREN

VICKY

ALMA

EMMANUEL

BETSY

SHELLEY

CASSANDRA

ALINA

ABIGAIL

SAMS

JENNA

BRANDI

KATRINA

JOEY

CHARLENE

NADIA

FRANCES

RODNEY

GORDON

NORA

KARA

ARIEL

CREDIT

CHEGG

JODY

ARTURO

LAWRENCE

NICOLAS

UNCLE

GERARDO

BRANDY

WILSON

FELICIA

MARSHA

COLIN

LYNNE

TRICIA

HAROLD

DELL

RENATO

JEANETTE

CLARA

SHERRI

ADRIANO

ALL

WORLD

BABIES

PRISCILLA

KRISTY

BRIDGET

DREW

LYDIA

ARLENE

CURTIS

JULIAN

ROSEMARY

KELLI

FRAN

MARTY

CODY

DUSTIN

HUMAN

VERA

ROBYN

ACER

LUCIANO

MICHEL

VALERIA

GOODGAME

ADRIENNE

MARISA

LOIS

CORY

BERNARD

HOTEL

DAD

BLANCA

SUSIE

ALVARO

TREVOR

MEGHAN

JUNEIRIS

KRISTA

EVERYDAY

JESS

PRISCILA

VICKIE

WHITNEY

KURT

RICKY

LYNDA

EVAN

RACHAEL

FABIANA

MA

MAYRA

GRACIELA

KELSEY

FATIMA

RAMON

SOPHIE

BELINDA

SHERI

ISAAC

CAMERON

ELISA

KARL

MARCIO

AMAZONCOM

DICK

SEBASTIAN

MARIANNE

JESSIE

AIMEE

GLADYS

BLAKE

LANCE

EDITH

ERNESTO

KARI

STELLA

DERRICK

ROSS

RONNIE

GUILHERME

GLENDA

KRISTINE

BRADLEY

ERICK

TERI

PAULINE

MARVIN

LOURDES

SHERYL
GWEN

COACH

NATE

MARGARITA

FELIX

CRISTIANE

DOMINIQUE

DD

CAMILLE

STAN

GLEN

PAIGE

FIRST

MARISSA

WHITE

CAITLIN

GRANT

SANTIAGO

ZACH

ING

STUART

MARIAN

CANDICE

JC

TRISH

CONTATO

AMIR

YVETTE

DRA

CANDACE

MINDY

WESLEY

WARREN

BOYD

SOPHIA

ACCREDITED

BETHANY

PIERRE

GUY

SETH

MARION

ADOBE

LEIGH

LIC

EDNA

ORLANDO

JOAO

IRMA

MELODY

ACE

ABRAHAM

JUNIOR

MONA

DINA

LILIAN

ABERCROMBIE

KARIN

SONYA

ABEL

ADI

CHRISTIE

FAITH

NAOMI

KENDRA

MISTY

DENIS

ZACHARY

NADINE

DARRELL

MERCEDES

KIRK

EL

ICICI

ALFONSO

KENT

NATHALIE

LOU

LARISSA

SYED

EUGENE ROD

KATY

WILLIE

JOHANNA

VIVIANE

ROCIO

ALAIN

EXPRESS

TRACI

SILVANA

CELIA

RODOLFO
FLAVIA

JENN

SAC

LEON

INFO

TAMI

AMIT

MONEY

MIRANDA

DANI

ISABELLE

LINA

JANA

DEBORA

BEST

MD

NORMAN

CALVIN

RUSS
SHAUN

GAYLE

AGNES

BRIANNA

HOPE

PROF

NOEL

ROXANA

SOFIA

EDSON

AJ

MARGIE

ADA

DESIREE

AIR

AMELIA

GINGER

CASSIE

MARISOL

RUBY

SHELBY

FEDERICO

MAMA

LUISA

ST

MATCH

LARA

DAISY

GEORGIA

LILY

MARI

CARA

KELLEY

AIG

ATE

ALESSANDRO

KRYSTAL

VINCE

MAURO

JACKSON

JANINE

STANLEY

ELSA

DORA

JUANITA

SERVICE

MISSY

ANDREEA

ISRAEL

JEROME

IGOR AIDA

GERRY

MIA

VIVIANA

REV

HELENA

ANGELO

FASHION

BEV

ALE

DANILO

FLORENCE

LEONARD

CELESTE

GILBERTO

GRETCHEN

LESLEY

MARIBEL

DISH

MEL

DYLAN

TIAGO

GRAHAM

BERNADETTE

POUSADA

LORETTA

ARGOS

ALFRED

IOLO

FABIAN

SECRETARIA

ALVIN

ROXANNE

ELIANA
ELIANE

GUADALUPE

SHARI

DARRYL

AA

MAURICE

CANDY

STEFANIE

BOBBIE

CASA

CRIS

JOCELYNSTEFAN

MISS

IBRAHIM

MNICA

MITCHELL

DJ

MILTON

ALISHA

DUANE

KATIA

DOLORES

THAIS

GERMAN

LEILA

MITCH

MARIELA

BRENDAN

BRO

BRITTNEY

KELLIE

CHERI

JENNIE

GONZALO

TRANSUNION

MARJORIE

VALUED

ANDREI

MARYANN

HALEY

ELISABETH

VAL

BOMNEGCIOCOM

ROSIE

BYRON

PHILIPPE

KIRSTEN

GRUPO

JEANNIE

LEWIS

INTUIT

ALBA

ANDREIA

EARL

RAMONA

RANDALL

HILDA

FIONA

NICHOLE

ROSANA

JILLIAN

SANDI

DOMINIC

CLIFF

MOHD
DEVIN

JAQUELINE

LANA

FINANCEIRO

JANELLE

OLIVER

LEANNE

FOOD

ELIAS

ANIL

HUMBERTO

MEG

LUANA

HASSAN

LILLIAN

DOREEN

MIHAELA

RUDY

IRINA

FLAVIO
FABIOLA

MARLON

SONJA

GEOFF

DANIELE

KERRI
PATRICE

LIL

MARIANO

CALEB

GINNY

ELI

GABRIELLE

ALIBABA

TRISHA

STUDENT

VENTAS

ROCHELLE

CHASE

SALVADOR

ESTEBAN

ME

SALES

GILBERT

SPENCER

LATOYA

CLAYTON

JOSEPHINE

CLINT

ETHAN

CARINA

GRANDMA

XAVIER

WES

ERNEST

GABY

DE

TASHA

BABY

ABDULLAH

CLAUDE

SIS

MARITZA

LENA

VIVID
BOSE

RAVI

DARYL

ROLAND

LES

RAJESH

ELISE

DAMIAN

LIDIA

TAGGED

BH

LYNETTE

FAYE

IGNACIO

DWAYNE

MONIKA

GREGG

MELVIN

ALDO

GISELE

NICOLA

VAN

DROPOX

RAPHAEL

ALEXA

SMITH

FRANKLIN

MADISON

STACIE

HILTON

ADULT

VINICIUS

UNITED

CORINNE
RONALDO

SHAWNA
MAIL

KRISTIE

HENRIQUE

MIMI

AETNA

TEAM

CATALINA

NELLY

UNIVERSAL

ALANA

AUNTIE

PILAR

FRANCINE

BERNIE

JADE

CENTRAL

AJAY

SYDNEY

GARRETT

RESERVAS

KELVIN

VENDAS

EMILIO

EBUYER

DAVIS

MARLA

TIME

ABU

WAGNER

BODY

BEATRICE

ADOLFO

SIERRA

SUMMER

CARLY

REBEKAH

WADE

TJ

LOGAN

BLACK

CHRISTA

AGUSTIN

JOSIE

ANASTASIA

TIO

ANCESTRYCOM

MARCEL

LEA

PAPA

JANIE

ROBBIE

CLAY

MARIUS

TECH

NESTOR

HERNAN

FBIO

LLOYD

CLARE

FR

MAY

AISHA

DARIO

CLARK

LANDS

HOLLAND

JAIRO

ADMIN

ARNOLD

NEAL

HARBOR

ELEANOR

EASTBAY

PAULETTE

ELLA

KERI

MAHMOUD

FREDDY

CHANTAL

ABG

SANJAY

KHALID

HAZEL

VIJAY

ALISA

DELIA

JODIE

ROSARIO

GREEN

MATHEUS

ISABELLA

GIOVANNI

HUNTER

HDFC

CINTIA

FLORENCIA

WISDOM

LLC

IMRAN

ZOE

SOLANGE

MIHAI
CHERIE

PATSY

EMERSON

MAYA

JUDI

BOGDAN

ROMINA

DIANNA

MI

LIZA

HILARY

AUTUMN

BLUE

TRACIE

DEBBY

MADELINE

NOAH

NEWS

BRIGITTE

DWIGHT

JEANNETTE

MARTINA

FLOR

CHRISSY

GERALDINE

LE

CENTRO

COLE

CURT

TRINA

EUNICE

JEFFERY

FRANCESCA

CHRISTI

AUGUSTO

IVANA

ANGELINA

SYLVIE

ROBSON

CHLOE

FAMILY

LORNA

KING

PERRY

ERNIEOLD

MARCY

JAYNE

JOHNSON

BILLIE

ANTOINETTE

ANDREAS

RAJ

CRISTIANO

TOMAS

EBATES

KEISHA

FREDERICK

DEVON

JEFFERSON

INES

HANS

ROGERIO

IVY

OLIVIER

ACCOUNT

ANTONIA

ELLIE

ADELA

GERARD

MILENA

ANDRA

ROMAN

BRIANA

JACQUES

AURORA

LYN

VALENTINA

PCH

JP

ARACELI

RAFAELA

GISELLE

VICENTE

ROLANDO

KAITLYN
JOB

VERNICA

EUGENIA

TY

AILEEN

SUNNY

REBECA

ICE

JUSTINE

ALLYSON

DONNIE

JACLYN

HORACIO

CYNDI

JONI

SUNIL

ADNAN

CHIP

CHANDRA

SIMONA

MAGDA

CONTACT

MABEL

AC

MYRIAM

BART

ISMAEL

COMERCIAL

BOBBI

SUPPORT

NORWEGIAN

MATIAS

PATRCIA

RACHELLE

FITBIT

BERNARDO

PAULINA

MARSHALL

CORINA

GIL

KAT

MAXINE

MAGDALENA

CJ

ARUN

BELLA

ESQ

KARINE

BAILEY

GLOBAL

DEBI

JANIS

ANCA

MYRA

DEEPAK

BERTHA

OSVALDO

GUARANTY

LAUREL

BECCA

CHERRY

RAHUL

GISELA

TEXAS

SASHA

EBONY

TABITHA

DBORA

DENA

SILVIO

GAVIN

FABIANO

HUGH

VLADIMIR
EDDY

MALCOLM

GEORGINA

DAMON

GARRY

LORA

BO

LAURENCE

ADILSON

MARYAM JEREMIAH

VILMA

MANNY

LAN

FANNY

JULIET

SUSANNE

YAHOO

GILLIAN

LIBBY

TORI

SANDRO

CATO

HAYLEY

DAPHNE

ROSANGELA

DESTINATION

GEOFFREY

LORENZO

NANA

ANTOINE

BLAIR

ASHLEE

MICHEAL

GUMTREE

TATIANE

ADINA

STANDARD

TREY

ALLIE

IVONNE

KATELYN

DIAMOND

NATHANIEL

MICKEY

TOBY

FLORIN

NOEMI

VIAJAR

RAMIRO

LACEY

WORK

ANDRS

SHAUNA

LUCA

ESTELA

MANUELA

MATHEW

GABI

ALEXANDRU

ANDRESSA

DENNY

JAMAL

MEAGAN

RED

SANDEEP

LILIA

OWEN

NIGEL

REGINALD

EVE

ONLINE

SURESH

SHANA

SAUL

MRCIA

CELSO

ARIANA

LADY

LOLA

VITOR

JSSICA

MOISES

SUZY

JANAINA

PETRA

MAC

ZACK

TAMMIE

IOANA

CLUB

CONSTANCE

SELECT

CLARENCE

STACI

SIDNEY

CLARISSA

HARVEY

SAL

HILLARY

CARLO

HERBERT

BERT

ANNEMARIE

JULIETA

MARTINE

BRYCE

KENDALL

HELENE

YESENIA

BERNICE

LIA

ROSEMARIE

IDA

CHRISTOPHE

AMIE

ARI

AUBREY

RAMESH

NATIONAL

CRUZ

ERICKA

EMILIA

CAMILO

YOUR

KATHIE

LEROY

FRANCO

JENIFER

ADEL

LAURENT

DARLA

BORIS

CHARITY

FABRICIO

LEN

MERCY

CALL

WOODFOREST

RH

ASTRID

MINA

VODAFONE

BAJAJ

CHARMAINE

OUTLET

JOBS

COLETTE

FLVIA

RUSTY

VIC

ROYAL

ASHLEIGH

JOSUE

BENNY

MALIK

SOUTHERN

KYLIE

ESTUDIO

FRANKIE

JONAS

AGE

MARGE

SHERRIE

DAMIEN

CS

XOOM

DULCE

LIGIA

MANOJ

TRENT

ASHOK

KHALED

SAMIR

THERESE

DARCY

TRUDY

STEPH

CONGRESSMAN

SGT

JUANA

JENNI

MICAH

MILDRED

ALEXANDRIA

CARY

JULIUS

NO

REZA

WILLIAMS

RANDI

JASMIN

JANETTE

DIOGO

RONDA

TERRA

HANNA

FAISAL

SIRIUS

CSAR

KIRAN

EDGARDO

REGGIE

JJ

THELMA

JEANINE

ASHISH

BJ

CARTER

MALLORY

JOAQUIN

MYRNA

CONNOR

EMILIE

CEDRIC

ADELE

MARGO

TYRONE

SAMMY

AVA

MUSTAFA

INTERNATIONAL

ANTON

ANDI

ABBAS

YVES

GENEVIEVE

JULIEN

REX

ASIF

PASCAL

LOREN

KIMBERLEY

MASON

ADMINISTRACION

SAN

MUSICIANS

SHANNA

LOVE

AIRTRAN

GMAIL

PRINCE

WELLINGTON

ARQ
MELISA

SISTER

NGUYEN

AUNTY

GABRIELLA

ALLY

NIKI

PATRICIO

HERMAN

HANK

ABHISHEK

JACQUELYN

DAIANE

GERALDO

MARIAM

SERENA

MAURA

SILVINA

CAREY

FINANCIAL

GWENDOLYN

COLEGIO

ALISSA

ANNMARIE

RESPONDER

SHEENA

DALLAS

HELP

SERVICIO

LU

MOSES

YASMIN

HAMID

JD

ADVANCE

KRISHNA

WILMA

CAIO

RENAN

UNIVERSITY

VANIA

KAMAL

ANAND

OANA

ASHRAF

ABBEY

MANISH

PRESTON

JOSEFINA

EMANUEL

AMOR

URSULA

KITTY

RAKESH

ACCOR

LONNIE

COMPRAS

GABE

GUS

SABINE

LANE

BUD

SKY

ASIA

MOHAMAD

CONSUMER

WEST

FIDELITY

LITTLE

LIVIA

DELORES

SHELIA

FLORA

VANESA

POLLY

BUDDY

BURKES

HARRIET

GEMMA

MAE

KARIM

AMI

MRCIO

SAVANNAH

LUIZA

SOLEDAD

AMALIA

ALIN

ELIZA

MICHAELA

JONES

ROCKY

SERGE

HERB

SUPORTE

KASEY

JOHAN

BROWN

DARIN

EZEQUIEL

CHICAGO

AAA

ROGELIO

TAM

JOANA

LOS

DANTE

LORIE

STEWART

ZULILY

JERI

DANIELLA

ABE

MEHDI

MARCELLA

PRIYA

CLIFFORD

JEANIE

ARIANE

ISABELA

CHRISTIANE

WALT

LEVI

GERI

NICKY

SUZIE

LILI

KAITLIN

BUTCH

ALEC

CINDI

AGUS

MARCI

IRA

ELVIRA

REINALDO

ENG

MARIAH

CP

LOJA

GO

AMIN SAMI

GIOVANNA

ANDRIA

GENERAL

HCTOR

SRGIO

BRADY

NORM

RADU

CLINTON

KATHI

VERNON

CELINA

BRIDGETTE

ESCOLA

DESTINY

PEARL

CAR

LYFT

PEG

NATHALIA

ALYSON

JEANNINE

TESSA

ESMERALDA

BRBARA

MICK

GIGI

LUPE

ILEANA

FRANCISCA

ROGRIO

SHELDON

YOUNG

CLICKON

ANALIA

JAMI

LIBERTY

ANH

RAM

LEANN

CHAMPS

SOLOMON

MILES

BRET

JUST

PR

ANGELIQUE

MAI

CITY

DONA

BRYANT

SKIP

AMAZON

SANDRINE

TERRENCE TAMIKA

PARKER

MARCIE

WALKER

CLAUDETTE

SONNY

NICKI

JHON

TREND

ONE

THIERRY

DEIRDRE

VALENTIN

AB

MILLIE

AUDRA

DOW

JOLENE

AURA

VISHAL

CAMILLA

STAR

FARAH

TALITA

DEL

SWEET

ELVIS

CATALIN

HAL

FREDY

DINESH

LUPITA

YURI

AYMAN

PAOLO

RAL

DOTTIE

NOELLE

RENA

RENWOOD

DEANA

RANA

KARYN

FLVIO

LESTER

AMINA

MELINA

CLYDE

BELEN

SENATOR

CELINE

DUNCAN

MOSTAFA

MAHESH

BEA
DALIA

KAYE

RILEY

ESTER

WINNIE

INSTITUTO

BETO

TONIA

STEPHAN

FLOYD

SUZETTE

LILIANE

BOSTON

DEPARTAMENTO

XIMENA

CRISTI

CARI

ERWIN

ADMISSIONS

MO

NUR

KENYA

ABC

JUDE

ETHEL

HEATH

SOL

DIRK

MIRTA

ESPERANZA

PRINCESS

CONSUELO

LETCIA

SAFECART

MEDIA

JOSIANE

HARRISON

COLLEGE

SAEED

PALOMA

INDIA

RALUCA

YADIRA

REY

NEWSLETTER

MIRELA

ALAA

MACKENZIE

MILAGROS

NOVA

SUNTRUST

ALEXIA

SM

ABBIE

NAN

JULIANO

LENNY

SELENA

JERMAINE

BOOT

ELIJAH

ADIL

SELMA

SOUTH

GALE

FRANCOIS

WILLY

LIONEL

ANGLICA

BREANNA

PERLA

CLUDIA

SACHIN

NOELIA

OCTAVIO

DAMARIS

AFFORDABLE

CARREFOUR

PATY

MEMBER

SAMIRA

CINTHIA

IVETTE

ABD

GASTON

RAE

COMCAST

TEDDY

KAK

MIRNA

CECIL

LATASHA

BROOKS

ROSALIE

MAGALI

AAMIR

SECOND

TRISTAN

NICO

ELSIE

DESMOND

MORRIS

CHI

VENUS

EFRAIN

ATENCION

SUZANA

MURIEL

LIN

EASY

LAZADA

NORTH

AGUSTINA

TITO

SUELI

LILLY

MIRIAN

AMR

COLLIN

CAREER

DARIUS

KAROL

GERSON

LEONEL

JACQUI

EQUIPE

JOHNNIE

TERRANCE

AMF

NOREEN

LUCILLE

GABBY

SHAY

WINSTON

FREDDIE

TOP

MAYARA

CORA

ANTNIO

PC

DADDY

DOLLY

JAZMIN

CA

AVERY

TARIQ

RAJA

DTE

ROHIT

VIOLETA

ADE

LIAM

DO

TESS

MARICELA

SORAYA

ARIF

HAILEY

DARRIN

DIDIER

GILSON

ELLIOTT

HASAN

CARISSA

ADM

EVANDRO

ROSY

LI

AH

BROCK

ELISANGELA

TERE

NEHA

CLAUDINE

WOMAN

ACCOUNTS

BETTER

WALLACE

ADALBERTO

NITA

REN

MADELEINE

EDISON

LL

BISHOP

HEALTHECAREERS

ABID

LUC

BILAL

ENVIAR

SOCIAL

GAURAV

ELECTRONIC

CASH

AMPARO

NOOR

DOONEY

MURRAY

CAT

DELPHINE

DANY

THEODORE

FINGERHUT

GUILLAUME

CECILE

MARKUS

PJ

MARKETING

GILT

CHELSEY

HP

MATEUS

MANDI

ADITYA

ANIBAL

ALEKSANDRA

ANABEL

COORDENAO

LOUIE

IRFAN

DAIANA

BRITNEY

DANE

VIVEK

SORIN

ALLSTATE

BROTHER

REGINALDO

WENDI

KENNEDY

WALMART

ADAN

AYESHA

CARLTON

FRANCESCO

JOELLE

ISA

TERENCE

GILLES

VINOD

WENDELL

ADRIANE

LORRIE

RICHIE

GRETA

BOX

ANGELES

RECURSOS

IONUT

JOHANA

REED

ALONSO

RORY

SITI

MILAN

NORBERTO

NATLIA

EVERTON

CONRAD

SC

GRISELDA

TERRIE

ASHTON

WILLIAN

LUCKY

VF

AXEL

NITIN

REAL

ELLIOT

PANKAJ

HAPPY

SANTOS

RENT DELTA

JULI

HONG

CLEBER

ELMER

PRAKASH

CPA

TATA

FAST

ABO

DEXTER

AMAN

RJ

EMIL

DARWIN

STEPHANE

NFL

TAN

LIANA

MAJID

OSAMA

LAILA

DARA

LUCIANE

MARTI

MJ

LUCIE

JAYSON

BRITT

STUDIO

NOE

OSWALDO

FILIPE

THANH

WALLY

CLINICA

AD

SUPER

MANOEL

GAY

DOT

ROCK

ASHA

QUALITY

VALRIA

ELDER

ANAMARIA

MARYBETH

SAID

CC

AN

JACQUE

CAMPBELL

PRECIOUS

JULIANNE

REYNA

ALPHA

VLAD

HOLLIE

JOHNATHAN

DIXIE

CARINE

GERENCIA

ADELINA

SAAD

LATONYA

STERLING

LILA

LEONOR

LOGITECH

BEVERLEY

CALLIE

LEEANN

DEIDRE

SANTA

JUN

INA

DIONNE

DAVI

GURNEYS

ANJA

NURUL

PRADEEP

IMELDA

ACCEPTING

KATHARINE

ISMAIL

KAI

MARYANNE

SONDRA

ASK

FAY

BEAU

EUGENIO

ARNALDO

DAYANA

NICOLETA

JIMMIE

RIC

GIUSEPPE

BACK

JACKY

MILLER

FLORIDADEMOCRATIC

ISAIAH

MARIEL

JAIR

AM

TANJA

SATISH

SUSANNA

LINCOLN

SANTOSH

REYNALDO

WASHINGTON

SHAHID

JAYME

UBER

MEGA

AMAL

ABI

AZIZ

ROWENA

DINO

FRANOIS

KIRA

MAXWELL

DI

LYLE

PA

DIRECT

RAVEN

MARTN

ZAHRA

STEFANOXIOMARA

SELINA
FRONT

VERO

NAMESPACE

SABINA

RINA

EMAD

TARYN

VIRGINIE

MANCHESTER

CHAN

BHARAT

SAMARA

TAMMI

CORI

REID

FREE

HARRIS

EDER

EMILIANO

COOPER

TANISHA

ALIREZA

GUIDO

NUBIA

SHOP

USMAN

ANU

KC

SPEEDDATECOM

MIRA

DEANNE

PLENTYOFFISH

CLINE

TAREK

MASTER

BERENICE

LAURI

MINH

CIDA

OTTO

CARYN

OCHELARIDESEZON

ROMEO

JANNA

AHMET

DAILY

ANWAR

MAXIMILIANO

CAITLYN

BONITA

SHEREE

WAYFAIR

MARKO

DALTON

ARTUR

ELISHA

AGENT

CHRISTELLE

GLOBE

MIREYA

ANKIT

DA

BUSINESS

ESCUELA

CAMELIA

KHALIL

ADEMIR

BRITISH

ALEKSANDAR

MOTHER

GARCIA

JELENA

PRASHANT

JONATHON

RENAE

MANU

MUKESH

EDEN

JIMENAFTIMA

KG

JOANIE

ADELINE

NEWMARKET

RUBENS

DONNY

LOAN

ALTHEA

FREDERIC

ROBINSON

DAYNA

PERSONAL

GEORGES

ESTELLE

MARGUERITE

LUCRUESENTIAL

GROOVEBOOK

PAK

PASSARELA

LIZBETH

BLAINE

STPHANIE

ANI

MICAELA

BABA

SYLVAIN

GRACIE

MC

CARMELA

CAM

SUN

VIOLET

OIL

CRISTY

ATTORNEY

MAIRA

PRAVEEN

THOMPSON

DONOVAN

AMERICAS

MOLLIE

JANETH

POOJA

CHEYENNE

TANNER

ROSALIND

BRIANNE

QUENTIN

LISE

GILDA

ASH CAL

LAMAR

SIR

JARROD

ROSANNA

VALRIE

DUSTY

APPROVAL

ELTON

KUMAR

CARE

ASAD

DAKOTA

MARGOT

JERRI

ANTONY

SID

SCOT

CHANTEL

TYSON

ARNAUD

LUCIO

EDIE

ADRI

ADVANCED

GRAND

KIT

THEO

AIDAN

MILA

NISHA

REGIANE

LUCINDA

DC

STATE

AMIRA

LONG

CLIVE

CATHLEEN

EM

MOHSEN

ANGIES

STEFANIA

COUSIN

MAJA

NIDIA

DOC

NILDA

HUDSON

XBOX

LUCIENE

BARBIE

RICO

PB

DOM

ROBBY

GENA

LAS

GILMAR

HOUSE

ARIANNA

GOOD

RAZVAN

LIFE

PRIYANKA

CAREN

ANTONELLA

JACQUIE

GUITAR

PHD

ALAINA

HUBERT

BETTINA

ELYSE

VIKAS

HARI

PASCALE

PARIS

DOMINGO

ADMINISTRACIN

PIA

COLBY

GANESH

MITZI

AGENCIA

AMAR

GOLDEN

CLARICE

NIC

SVETLANA

BENOIT

JB

BOSS

CLEMENT

EVERETT

MOHAN

ELBA

CLIFTON

MATHIEU

MOMMY

SALIM

LEXI

JULIETTE

THUY

CLIENT

MOE

SOCORRO

NANETTE

MAN

LINDY

LULU

KENIA

SOPORTE

CIARA

HELLEN

JEFERSON

ROSANE

ELVIA

MIN

CALIFORNIA

SADIE

CLUDIO

SAMEER

FREDERICO

DILLON

MADALINA

ALECIA

RONI

SRI

FAUSTO

GARETH

JULES
HELIO

SUZI

APARTMENT

GINO

HARP
RODERICK

NAVEEN

OFICINA

JESSI

DEENA

CHAR

NABIL

LEONA

SHEA

QUINN

GENESIS

KIA

ROHAN

CHIARA

DORIAN

AND

ALANNA

UNDISCLOSED

ADRIANNA

THAS

ILIANA

CRAIGSLIST

RPONDRE

KEILA

HAYDEN

JULIANE

TERRELL

NASTY

ASMA

CATHIE

KAYLEE

CORTNEY

VCTOR

WILFREDO

CORNELIA

NASIR

CANADIAN

CASSIDY

GRAEME

SALMAN

CHESTER

ADRIANNE

RESERVATIONS

MARLI

FRANCK

NOLAN

NIKITA

MAKEMYTRIP

INTERNET

CONTACTO

MARISELA

WHATSAPP

SMART

ZACKS

BIA

DENTAL

SU

ZAC

ADY

MONTE

GABRIELE

ULISES

PORTAL

AMOS

HEALTH

ATHENA

BENITA

BLESSING

OLA

FACUNDO

ANDREZA

ALY

RAJU

TAMEKA

SCEN

WEB

GILL

MARIANNA

MARILIA

ADAMS

HONEY

RABBI

GEORGIANA

CARSON

ANAS

BRENNA

ELISSA

AG

ELITE

RITE

MIRCEA

LUCIAN

CARO

KAMRAN

TERESITA

TOTAL

RASHID

LUNA

BENNETT

INS

PEPE

GUEST

MICHAL

CHEF

SANA

ISIS

LARISA

LEIDY

ACCEPTANCE

FAT

FRANOISE

KIARA

JAMILA

ATUL

GLAUCIA

KYLA

COLEEN

MACK

LYNNETTE

BREE

CAMI

MURILO

DIAN

GERRI

KIDS

LACY

GRFICA

RONNY

REINA

DEACON

AILTON

SANTANDER

YAN

LEUKEMIA

LOUISA

RUI

ACADEMIA

NAYARA

CASHNETUSA

FATHER

JOJO

RAMI

RUNTASTIC

HANA

COLLINS

NADEEM

MOMS

NICOLS

CENTURYLINK

JESSY

HAMILTON

VERONIQUE

ADRIN

BRANDIE

HUNG

KERRIE

QUEEN

GIRLS

PRO

RIZWAN

ADAC

ZYNGA

CECELIA

ACT

DAVIDS

VINAY

PHOEBE

CYRIL

DARREL

PACO

EDMUND

FRITZ

DAYANE

LO

ARVIND

BIAPBODY

LAIS

EMAN

CARLENE

MAR

HOT

FREDA

DIGITAL

CLEIDE

STPHANE

DION

COSMIN

DELLA

ANDREY

NEIDE

RO

TIFFANI

SON

MARIN

KASHIF

VRONIQUE

CHEAP

SUZAN

LIDIANE

SPEEDYCASH

MYRON

MEDICAL

PREMIER

IARA

LTD

DIVYA

SRINIVAS

BB

DRAGOS
ION

LANDON

CANDI

NILTON

LUANN

CH

IULIA

CONSTANTIN

PROFESSOR

ROSETTA

PARK

FORREST

LILLIE

RAFA

ACTIVISION

VALARIE

TARGETMAIL

SO

TEE

MARIJA

HARLEY

PIZZA

SHARRON

RHEA

MINERVA

KLEBER

VIA

DOCTOR

CREATIVE

ORDER
ANNABELLE

YANINA

TUAN

HENRI

ABDEL

MADDIE

GARDENERS

ERICH

EVANS

REJANE

HLNE

SALEM

FIDEL

KRISSY

NADA

JANELL

JOICE

ELLIS

CHANDLER

SEEMA

ROSELI

GENEVA

VINCIUS

ALISSON

CLAUDIU

ACCESS

DONT

CHET

JANEL

KARAN

FARID

DORI

CUZ

IT

SA

LATISHA

ARON
LADONNA

SEBASTIEN

HELOISA

JACKI

JEWEL

FABIENNE

FABIANE

YUSUF

FARMACIA

AMJAD

LARS

AMERICA

MAT
TRAN

NIA

ROSALYN

TRINITY

SANJEEV

JENA

DEISE

ARCHIE

ELLE

ROSALBA

CHRYSTAL

FALE

ROSANNE

EARLY

DEBBI

PHUONG

TISHA

KLAUS

MAGALY

NAT

DUKE

FABRICE

HARISH

ABS

MEI

BONPRIX

SALAH

FLORIAN

SIOBHAN

JT

WALEED

KRISTIAN

AMMAR

APARECIDA

EAST

JENI

FOX

RODRIGUEZ

ENZO

SHERIF

VAGNER

HOLIDAYS

AHSAN

MARTINEZ

ACTIVE

VIKKI

NELLIE

TEREZA

CORAL

VIVI

CAPT

NIKHIL

LISSETTE

LUCILA

SANDIE

LUIGI

KIRSTY

HANY

OM

SHAYLA

RHODA

SPRING

JEANPIERRE

MARITA

BROOK

LESA

JUSSARA

GM

BING

BELLE

SARITA

DEEPA

INDIRA

OFELIA

FLO

SUSY

KRISTOPHER

DEDE

GIOVANA

OVIDIU CARROLL

LEAGUE

ARIELLE

LEANNA

TAXI

LIM

MARIANE

LAVERNECHRISTIN

DENISSE

KYM

NOR

CHANEL

OLIVE

JADA

CIPRIAN

CCILE

CHANTELLE

ADRIEN

RAJIV

BU

STU

ANGELINE

LOPEZ

ANGELIA

LUS

DILIP

FRDRIC

MUM

ABRIL

SAI

RIA

JM

KATI

HAMZA

VI

YASSER

LIZZY

CONSTANZA

HOSSEIN

GONZALEZ

SCHOOL

CAROLA

WAEL

KAROLINA

SALVATORE

BETTEMEU

VERNA

RUBN

LYNDSEY

ALENA

BRENO

NARESH

KIK

IR

BA

COUNTRY

SAYED

HADI

ALERT

PENELOPE

CASSIA

VIRGIL

ALONZO

LANI

MARCELLO

MARILENE

MARICEL

PRASAD

SD

RIO

SALLIE
COCO

KRYSTLE

CABLE

EU

MONTY

AGODA

ENRICO

MOBILE

ALIX

NILSON

WYATT

LOREDANA

VALDIR

ELODIE

WOODY

TOBIAS

SALMA

VALTER

NANCI

LAURE

COLEMAN

TITA

POP

FRESHMAN

IVONE

TIARA

UMA

VIDA

ROSITA

MARYELLEN
EVELIN

HAMED

BE

CANON

VASILE

IVO

ACCOUNTING

LUDMILA

FAHAD

MEAGHAN

TAHIR

MIKEY

ERROL

IVN

MAURCIO

CHIEF

MBA

TELMA

TIANA

SBASTIEN

STEVIE

PROPERTY

RAIMUNDO

COBRANA

KYRA

THOM

MATTHIAS

ESOLAR

LUCI

RC

HAYDEE

MOMMA

EDILSON

KAREEM

DARNELL

IULIAN

DEON

LIZZIE

NORBERT

USAA

FRONTIER

EVENTOS

NIKOLA

FEMI

ABNER

SAURABH

MARCELLE

WERNER

ROMULO

NILESH

SRA

SHELLIE

MARINE

NED

JAMIL

AVIS

ZAINAB

FRANCOISE

RADIO

BECKI

ALTON

MIREILLE

HIRERIGHT

ARMAND

USA

YOUSSEF

AKRAM

MELBA

ANJALI

CLEO

COMMUNITY

ALEGERICUCAP

ZAHID

ADDISON

MAM

YOGESH

ALBERTA

JACKELINE

MARNIE

TALIA

LYONESS

GORAN

MAHA

ARSHAD

CAMP

BUCK

JYOTI

BEYOND

SAULO

DRAGAN

NEWEGG

AKBAR

ARTE

ARACELY

DEMETRIUS

PAYROLL

ENTERPRISE

VIRGIN

WALID

HAFIZ

AVI

STEPHANY

HUSSEIN

SAHAR

FARMERS

JED

SCOTTY

ROSI

PORTIA

MEHMET

ABDALLAH

JESICA

SEBASTIN

GRIFFIN

HANI

ROL

ROSEANN

CURSOS

ANISSA

AGNIESZKA

ANYA

RUTHIE

AMER

PAVEL

BENNIE

TASTE

JONNY

DOMINICK

VIOLA

KATERINA

DANIA

LINH

UBA

CHEN

DENICE

GEORGETTE

HOUSTON

LAKSHMI

MANAGER

JAI

BENITO

CRISTIANA

CARMEL

AR

BEE

NATACHA

LOYAL

SHAN

BRADFORD

LISETTE

SHIVA

GREGORIO

NATALY

YARA

BARRETT

CHASITY

SHERMAN
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Figure 8.1: Visualization of the name embedding for the most frequent 5,000
first names from email contact data, showings a 2D projection view of name
embedding (left). The pink color represents male names while orange denotes
female names. Gray names have unknown gender. The right figure presents
a close view along the male-female border, centered around African-American
names.
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GUIMARES

BENTLEY

RITA

ANDERSEN

MAC

SHIRLEY

BOY

BELLO

MEADOWS

IT

CARDONA

HIGH

COMBS

SUSAN

HENDRICKS

ARELLANO

KRAUSE

GALVAN

GALINDO

DIANE

CALL

MCKEE

HUBER

SAMPSON

SUTHERLAND

MORSE

MULLEN

BRO

DONNELLY

BROWNING

FIGUEIREDO

CRANE

DONALDSON

HULL

PITTS

VALENTINE

PEARCE

DICKERSON

HAAS

KNAPP

LESLIE

ISMAIL

NIXON

LEACH

NAVY

INVESTMENT

BRANDT

FREIRE

PLUS

ABU

MICRO

NOVAK

KAUFMAN

ROCK

FRY

BLANCHARD

SHAIKH

DADDY

KLINE

LIVINGSTON

XM

PIMENTEL

CORDOVA

CORREIA

HIDALGO

SHEA

LEO

LINK

CASTELLANOS

HEBERT

CARRASCO

LEMOS

DURHAM

DUKE

DIANA

BRIAN

CLARO
CONTABILIDADE

CHEUNG

STUDENT

KAISER

VANCE

ONEAL

NIEVES

PECK

MCDERMOTT

PALMA

DORSEY

CONTACT

LEONARDO

ARTS

TRADING

MONICA

MELTON

DANIELA

WEEKS

TV

CHRISTINE

HUFFMAN

VERMA

GAINES

LORENA

MCCANN

ORDERS

WOODWARD

SHEPPARD

KATHY

MCPHERSON

GALLO

BULLOCK

ELLISON

CONNOR

WOODARD

ONEIL

MCCONNELL

ADMINISTRATOR

BRANDON

HASAN

CONNOLLY

CORDEIRO

LANGE

EVERETT

RANDOLPH

SERGIO

GONCALVES

BAIRD

PERSONAL

ART

BASTOS

BRIGHT

DINIZ

GUEDES

BEZERRA

QUINTANA

POTTS

REZENDE

KEVIN

ISAAC

MARCUS

VASCONCELOS

CAROLINE

MADDEN

TAX

SEBASTIAN

AVERY

STOUT

COSTELLO

CHOW

ENRIQUEZ

BROWNE

JENNIFER

BURGOS

RIVERS

GALLARDO

HOPE MCCLAIN

HORNE

CALHOUN

WILKERSON

DENISE

CASTANEDA

HEWITT

BARN

RAJ

JULIE

HENSON

MOSLEY

AMOR

GENTRY

RICHMOND

DIAMOND

NETO

BLACKBURN

HALEY

VALLEY

CARLA

GODOY

BOARD

TOURS

ZAVALA

POLLARD

RAMON

PUGH

EDWARD

DAILY

CARNEIRO

RENEE

CLEMENTS

CREATIVE

GRUPO

MALONEY

HUERTA

HURTADO

JARVIS

HICKMAN

VILLALOBOS

DOHERTY

DON

MILENA

NIETO

GORMAN

SILVIA

ALAM

ARMANDO

POST

DOUGHERTY

FLANAGAN

MCKENNA

ARORA

CHONG

IRWIN

RED

LILIANA

AGUILERA

ISLAM

CROSBY

LEARNING

BARBARA

ELECTRIC

TONY

SILVER

CARNEY

FIELD

PHAN

EDUCATION

SHARPE

ACADEMY

KEY

CHERRY

MATHEW

YEE

FERRARI

SAMPAIO

CAMP

HOANG

NGO

BUSTAMANTE

STANTON

LOUISE

HOOPER

COWAN

VOGEL

SANDY

KRUEGER

ROWLAND

CIV

SINGER

OR

PORTO

SELLERS

HILLS

CSAR

STUDIO

DELANEY

DEALS

MORIN

DAWN

SPEARS

BURCH

JUDY

SEGURA

CHACON

GAY

ABDULLAH

ZAMBRANO

SLATER

SISTER

JEFF

JAN

PENNINGTON

PROPERTIES

GOLDMAN

HERBERT

STARR

BUY

CLAUDIO

BARLOW

MONTERO

REALTY

ROSEN

HOLDEN

WALLER

CONSUMER

TRUONG

POP

KNOWLES

MAYO

COTTON

SEARS

MAHER

GUILLERMO

ARGENTINA

MCGOWAN

FILHO

WORLDWIDE

ERNESTO

SAMUELS

SHAPIRO

SANFORD

EVE

TREJO

TOVAR

HOLDER

RITTER

BAEZ

MCNEIL

TRAVIS

VENDAS

HAYS

SAENZ

OLX

AGARWAL

DUDLEY

MERCER

PAYMENTS

RICHTER

CROWLEY

ROSENBERG

REY

SHEPARD

BENTON

HENSLEY

AIR

KUHN

CISNEROS

BRAY

NICOLAS

SARAH

SHEEHAN

SOLANO

AARON

DUBOIS

MCFARLAND

NAVA

CANTU

OJEDA

MAYNARD

AYERS

RUBIN

SIR

DUNLAP

FAULKNER

BECERRA

NICHOLAS

VO

PRIETO

MENA

BERMUDEZ

ALUMNI

GUEST

ANTUNES

EVENTS

MIHAI

OTERO

MISHRA

SHARON

LEIGH

BOLTON

GLOBAL

VERGARA

RH

MAYS
RASMUSSEN

CORBETT

CORONA

DONNA

FREY

URIBE

CLARA

PRUITT

DALEY

ESQUIVEL

DWYER

WELSH

GALLOWAY

SALVADOR

PLACE

OCAMPO

PROCTOR

FERRER

FARLEY

LUTZ

CREEK

WILLS

MCKNIGHT

MCCABE

LOBO

WEB

RAE

MARIANO

FONG

POPA

EMMANUEL

VALDES

SON

ROSADO

VANESSA

MOONEY

STERN

SPRINGER

POSTMASTER

HICKEY

GUIMARAES

DOWNS

FRITZ

DEVELOPMENT

MCNAMARA

ONG

LORD

LAND

FELDMAN

WALLS

DELEON

JULIA

CASSIDY

LANCASTER

LARRY

BOURKE

CARMONA

CLIENT

JIMNEZ

PRO

ALICIA

JASON

ZUNIGA

GODFREY

GEE

GLORIA

COMERCIAL

REALTYTRAC

FRANA

SAAD

HARTLEY

RAZA

PATIL

ELDER

FARM

DOLAN

ESTHER

LOWERY

ED

HINTON

DEPT

CAREERS

LUCERO

XU

CAVALCANTE

AMAYA

EMERSON

ARCE

HILTON

HERRING

ESPOSITO

GIBBONS

MOYER

DREW

ROLLINS

HARDIN

COUNTRY

CURRAN

STAFF

MAIN

RIO

APPLICATIONS

LEANDRO

KESSLER

LY

LEVIN

CLEMENT

GRIFFITHS

TALBOTS

RANA

KENNY

CRISTIAN

DODSON

DANG

SEXTON

MOSER

KENDALL

KORS

SCHULZ

VERONICA

NEWELL

MCCARTY

CORRETORA

LIRA

DRIVER

HAN

EWING

MERRILL

HOMES

BUI

DICKINSON

BRAND

QUIROZ

WIFE

WILDLIFE

CHRISTIE

BACON

LYON

FINLEY

SARMIENTO

APARTMENTS

CHAMBERLAIN

VINICIUS

OSCAR

VITAMIN

STEPHEN

ICE

BLOOM

MEIER

DUTRA

COMPTON

LORENZO

FINCH

SAEED

SWAN

RICO

DONAHUE

BRITT

RIVERO

JACQUES

HYDE

MONTENEGRO

PROGRAM

ANGELICA

EGAN

MADDOX

ENGLAND

ALAN

CLIFFORD

LONDON

ASSIS

MARGARITA

MARINHO

BENAVIDES

BOOKER

HESTER

ALLAN

BONNER

TOMLINSON

HENDRIX

CLAIMS

SCHMITZ

OLIVA

LEHMAN

BOSS

SKY

SOCIAL

HOFFMANN

CROWE

STERLING

QUEEN

FRYE

BOGDAN

SORIANO

FISH

CRESPO

MARIANA

ESTES

NO

TAM

GREENBERG

ISRAEL

MERCEDES

GMBH

WESLEY

CLEVELAND

FULTON

COFFEY

CRAFT

ANDREI

GO

CACERES

DODD

SENIOR

BOYCE

BLANKENSHIP

RESERVATIONS

ALBUQUERQUE

WEBBER

MCALLISTER

KARINA

BERNARDO

HUMBERTO

MASTERS

GROVE

FABIAN

PARIS

KENNEL

SAAVEDRA

RITCHIE

WESTON

ABRAMS

PETTY

MATTOS

MACKEY

MIHAELA

FIRST

FREE

WITT

ACCOUNTS

KIDD

JAIME

MCGILL

OLIVARES

KAMAL

VILA

FINK

REYNA

CAMILO

AMY

GRECO

YOU

GAL

AREVALO

MAGALHES

POPESCU

COURTNEY

RAUL

ODOM

KERN

SEED

SYKES

TRAINING

VALENTIN

BRITTON

SYED

IMVEIS

GREENWOOD

INS

MATIAS

PHOTOGRAPHY

YADAV

SIMMS

MACKENZIE

ALCANTARA

OTTO

SALEH

JULIO

RIGGS

FALCON

TYSON

MILTON

DANCE

ORELLANA

ABEL

TAXI

HASTINGS

BARON

DOWNING

MADRID

ROBIN

ROLAND

SENA

BETTY

BROTHERS

DEMPSEY

MICHAELS

LOCKE

RIZZO

ABD

PAPA

SAID

GUILLEN

HEALTHCARE

HELLER

DEBBIE

GAGNON

INVESTMENTS

JESSICA

TERRELL

BRENT

DSOUZA

HAINES

WOLFF

KENNEY

DRISCOLL

HOLMAN

GUTHRIE

CONSTRUCTION

DICK

SOUTH

MAGEE

CHILDS

RESPUESTA

ROQUE

STAFFING

OSBORN

SIMONS

BINTI

BYERS

SIEGEL

FRIDAY

DENTON

ENGEL

WILDER

LOW

RUTHERFORD

COOLEY

ESTEBAN

STEFAN

SWIFT

NA

SANDERSON

CASTAEDA

MCFADDEN

PHILIPPINES

WARRANTY

RAQUEL

MEXICO

KINNEY

ZIEGLER

MELISSA

RANKIN

CULLEN

MOTTA

STELLA

RENE

WITHIN

SELF

ESPARZA

GUNN

ATENDIMENTO

JUSTICE

GARRIDO

ASSOCIATES

BUTT

WHITFIELD

BEAR

DONALD

CHO

BEAUTY

SNIDER

BATTLE

BABU

KO

COUTO

COUTINHO

ENG

PORTILLO

JOYNER

YODER

RIDDLE

HOLLEY

SEYMOUR

FINANCEIRO

DEAL

ALARCON

CALIFORNIA

IGLESIAS

RASHID

AU

DAUGHERTY

SHERIDAN

KROGER

WILL

BOX

JUNG

SCHWAB

AVALOS

HELPDESK

REZA

LANGLEY

MARCO

SCHUMACHER

JANSEN

MATTHEW

TOYOTA

HATFIELD

MODAS

MAHMOOD

DAILEY

MEDRANO

LADY

LOCKHART

LUKE

LAB

ANGELO

PRINTING

LACERDA

FRANKS

SHOEMAKER

VAZ

PIZZA

CRAMER

HA

BIN

ALFORD

HEALY

GAUTHIER

MAR

DEVINE

LARKIN

STEINER

AMOS

SARGENT

RICK

HOTELS

WYNN

GOFF

ALERTS

BURT

AC

FEDERAL

BENOIT

INNOVATION

FERRELL

SONG

HANEY

DAVISON

KIRKLAND

MAJOR

JERRY

DENIS

CASAS

MONTALVO

GAMBOA

CLAUDE
BROTHER

HUMANOS

INTERACTIVE

REGAN

PURCELL

HOTMAIL

LUCIANO

CARUSO

HELMS

PREMIER

MD

AMADOR

ELISA

MOTORS

HAY

MUSTAFA

CARVER

BETANCOURT

HATCHER

WORKFORCE

SIDDIQUI

FORREST

GRANADOS

LIGHT

CA

FRANCOIS

DUNBAR

ADVANTAGE

HU

DOWNEY

GANDHI

WAY

KIRKPATRICK

DARIO

ROCHE

PRITCHARD

MAHMOUD

MOYA

OTT

RON

DRUMMOND

KHALID

HOSPITAL

MOHAN

SORENSEN

AVILES

BERMAN

FAN

RADU

WINKLER

LING

HERRON

SIMONE

AMANDA

GUTIRREZ

CONSULTING

CLIENTES

CANTRELL

MENDONA

NAVARRETE

PICKETT

ALEXIS

VALLEJO

FELICIANO BRENDA

ALSTON

EMERY

GODWIN

KEARNEY

MOHAMMAD

PATE

PARDO

CHANEY

OHARA

HADDAD

CANALES

DILLARD

CATHERINE

CLAIRE

VIRTUAL

KYLE

ROGER
EDGE

ALEXANDRU

CANCER

CINDY

MASTER

PRINT

MAI

MINOR

ARRUDA

EAST

BINGHAM

LINARES

STEVEN

RIDGE

REHMAN

THORPE

LUDWIG

FATIMA

PLUMMER

MARIUS

KANG

CARVAJAL

MI

OSMAN

BEATTY
ROE

LEDESMA

PIKE

TALLEY

CASTLE

VILLAGE

TEMPLE

OLEARY

FOODS

PHILIP

READ

PUBLISHING

BOUCHER

MEEKS

TORO

MOHD

RINCON

ROYAL

CONNELLY

BUSTOS

KENDRICK

CS

MATT

VIRGINIA

MCMANUS

ACKERMAN

PRYOR

ZHOU

QUINONES

FERRAZ

GERMAN

CHANDRA

KRAFT

PAN

SALCEDO

OLVERA

DUQUE

GOLF

HANNAH

URBAN

ODELL

ENGINEERING

TILLMAN

NAME

FAJARDO

BOWDEN

EVANGELISTA

CARTWRIGHT

SU

SERRA

CORBIN

NOVO

CARRANZA

KEENAN

MEREDITH

INCORPORATED

CONNELL

DOE

RUCKER

PRESS

BURRELL

PIPER

ROLDAN

PERERA

WHALEN

HOLLIS

GRADY

DEWITT

VISION

KARIM

MAILER

RUTLEDGE

SONI

BERNSTEIN

GERARDO

NAGY

FOREMAN

PIERSON

POLLOCK

BURGER

BARNARD

ASH

DRAPER

HELEN

SWAIN

ELAINE

PAEZ

ROMO SOLEDAD

CHIU

OLIVIER

GLEASON

BARAJAS

BIG

SARA

LOTT

STRATTON

HENDRICKSON

EARL

HHONORS

GORE

STEPHANIE

ANWAR

FIX

MCGINNIS

MAURO

SEPULVEDA

MARCIA

PANDEY

LUND

LCIA

MARTA

CAHILL

HUSBAND

LOWRY

GROVES

JULIAN

BEE

COTE

COVINGTON

WOODRUFF

PLAZA

BROUSSARD

CALVO

MCCAULEY

EVENTOS

TRIBUNE

YOUR

LEN

GUILHERME

HUTCHISON

KURTZ

GAYLE

ARANDA

JARRETT

TIRE

CORNEJO

WINSTON

EDGAR

WHITLEY

DARLING

SCHAFER

MCCORMACK

COKER

JI

HAMMER

GILLIAM

MOBLEY

GREGG

COORDINATOR

ZEPEDA

IRENE

BERTRAND

KIMBALL

ESCALANTE

EDMONDS

HATCH

ASHRAF

GARLAND

PEACOCK

DYE

HOSSAIN

CARRERA

PLATT

ROUSE

DOTSON

PASSOS

WOOTEN

SUSANA

MAYFIELD

WOMACK

MARION

BIGGS

ALBA

TIME

FINN

ANDR

MAGUIRE

VIEW

GOSS

QUICK

SWARTZ

PARENT

BAPTIST

BIANCHI

MARRERO

TUTTLE

LEA

QURESHI

JOAN

METZGER

DODGE

KULKARNI

MAGALHAES

LEONE

HAND

WORKMAN

SP

CROCKER

BURKS

RAI

JANET

VERNON

SALEEM

HORNER

ARIEL

FABIO

PARTNERS

SANDS

COATES

BERGERON

CROW

PAL

RAM

UNCLE

ANDREEA

CRONIN

KOENIG

BLEVINS

GALVEZ

FARRIS

HOLCOMB

HOPPER

CUELLAR

KRISHNA

MONEY

STINSON

PAIGE

BRANDO

BELCHER

CHUA

VELA

TOTH

GAS

VALE

RESTREPO

WALDEN

HAGEN

EDDY

JOEL

STANFORD

CAMARA

JEFFREY

OMALLEY

BLAND

CHAPPELL

HSU

PENN

TONG

RECRUITING

PASTOR

KEN

JEFFRIES

WITH

DIRECTOR

SEWELL

MESQUITA

DOBSON

TURISMO

LUCA

STAHL

MEAD

LAURENT

DUONG

ANSARI

CORONADO

SLAUGHTER

CARMICHAEL

GIORDANO

PEDERSEN

QUEZADA

CHAU
KONG

SHAFER

MENESES

PAM

WEIR

HIRSCH

SALMON

GUSTAFSON

DUKES

TOPS

CARLTON

HARDEN

ADLER

LTDA

ROBISON

JAMISON

MAURER

PHIPPS

CLIFTON

ROBSON

ANIMAL

DOOLEY

TEAGUE

BLUM

APONTE

BUTCHER

PEIXOTO

MLLER

REDMOND

VERDE

VALENTE

CROUCH

MCCLELLAN

BAIN

MCHUGH

FLORIN

ELDRIDGE

THORNE

LETICIA

NOWAK

MICHELE

MARINE

FACTORY

MOUNTAIN

CAETANO

MCCRAY

FUNK

KAYE

LACY

SALEM

PAGAN

HERITAGE

NEUMANN

FOURNIER

JEWELL

SAMSON

SHERWOOD

GROSSMAN

NARANJO

LABEL

FAGAN

DAHL

CUMMINS

GERBER

HAMM

GALE

FAIR

AGRAWAL

PHILIPPE

SECRETARY

HUTCHINS

REPLY

MELL

RESENDE

ASSISTANT

MCNEILL

ORDER

HUGGINS

HEREDIA

REECE

MONROY

NATHAN

VINSON

CH

STACY

DANIELLE

BOWER

RUDOLPH

MAILBOX

TINA

MARC

YAN

FURTADO

HEART

LOTS

APARECIDO

TOBIN

CURRIE

JACKIE

CLINIC

COAST

ERWIN

CHI

RENATO

INN

CARL

NIX

FERRIS

POOL

DANA

ZHAO

CORRA

ZARATE

KATE

IRELAND

ROONEY

MARIAN

GREY

MCKINLEY

GAMA

GEIGER

GASTON

METZ

BACA

SADLER

RAINEY

DOAN

LILLY

SERNA

ANAND

MCELROY

CORP

SCHWARZ

DICKEY

MACKAY

TAMAYO

ROSENTHAL

PAYROLL

HIPOTECARIO

WHITTAKER

LEONG
SCHAFFER

LOJA

BURRIS

AN

COYLE

CONDE

WORLEY

GIRALDO

RACHEL

SIM

SILVERMAN

PULIDO

LOMBARDI

COUCH

MARGARET

VARGHESE

ZONE

HARRY

NEELY

CHAUHAN

ANDRS

GRIGGS

TOMPKINS

CHERYL

KRUSE

STUBBS

VOGT

QUIROGA

BRIDAL

LAUREN

ARTEAGA

VIDEO

CAPITAL

TATUM

TECHNICAL

MCGHEE

TELLEZ

STROUD VICKERS

SYLVESTER

METCALF

ELMORE

QUIZ

KEATING

MANLEY

MERCHANT

PRAKASH

POLK

CEBALLOS

LOCKWOOD

BERGMAN

HINOJOSA

WEI

CONTI

BURROWS

FINE

MESA

CLIENTE

DUNHAM

BARROSO

WATT

ARAGON

BOSWELL

ALDRIDGE

SINGLE

KOEHLER
VOSS

IVEY

HUSSEIN

MCDONOUGH

BHATT

POINT

HANLEY

HEARD

ROPER

PAINTER

VASILE

FARR

CHRISTINA

AMES

SHELDON

YEAGER

BOUTIQUE

STRAUSS

LEYVA

JACOBSEN

BOO

TRAVELS

STEWARD

CHRISTY

GIMENEZ

ALEMAN

SORIA

UP

NOVA

USER

PELLETIER

KAPOOR

DUMAS

KAHN

GARG

PUBLIC

NATION

GARDEN

FAY

TROTTER

PARTY

HOLBROOK

EDITH

EVELYN

LEIVA

BODY

DARBY

KITCHEN

CREWS

PASCUAL

NEGRON

ARREDONDO

AS

VALVERDE

WINN

SPORTSMANS

LIANG

BAUM

GREG

ERNST

CAVALCANTI

OREILLY

SCHREIBER

ERVIN

JOO

DUGAN

WOO
MCGREGOR

LYN

STOVER

MORE

SANCHES

NETWORKS

DAFITI

RICCI

SHERRY

COLBERT

OSULLIVAN

BREWSTER

COULTER

MADRIGAL

INFORMATION

NOT

CHILDERS

LUJAN

BOGGS

TRINDADE

AGENCY

PERES

BASSETT

KRISHNAN

RATLIFF

SAUCEDO

SALIM

SUPER

SOL

LONGO

WILLARD

BOSTON

KRAUS

HAGAN

THI

GRIMM

SHEIKH

STORY

BUSCH

LEMUS

GIVENS

SRIVASTAVA

SHRESTHA

FUNG

HACKETT

MCMULLEN

LIZ

WEINSTEIN

HOSKINS

PADGETT

BUCKNER

DOMINGO

OKEEFE

MARTHA

VENTAS

CONNORS

OGDEN

MCRAE

LANGFORD

TREE

SCHUSTER

PET

HINDS

KHALIL

CONSTANTIN

MAYES

SCOUTS
GROVER

MCGRAW

HOLLIDAY

LACEY

LOMBARDO

SALAH
COLOMBIA

URBINA

PAPPAS

IONESCU

BB

VITOR

SFPPDRAFTAUTHORIZATION

WILHELM

PUCKETT

SOFIA

CHAGAS

BILLINGS

GOODE

WESTBROOK

ANAYA

NANCE

TIPTON

MEADE

DELIA

GAIL

TOUR

CORNELL

ARAYA

SMILEY

WHYTE

ZHU

LOVELL

MILLIGAN

AKERS

REA

HABIB

HONDA

FRED

VIP

ACCOUNTING

CATHY

WADDELL

BRENNER

RECIPIENTS

PONTES

COFFMAN

MARTINO

SNELL

MALCOLM

ADAMSON

BALANCE

ALBRIGHT

PIMENTA

WAITE

CONKLIN

HAWK

MCGOVERN

ALBRECHT

CONROY

WAN

LAY

KEYS

GILLIS

BARRIENTOS

JOLLY

MARI

HADLEY

PENNY

YEUNG

ANGULO

ARENAS

HUI

TOLBERT

CROCKETT

NUGENT

CHILDRESS

VISA

CARLISLE

FRIENDS

CAREER

DUBAI

CODY

LAYTON

ULLAH

NORWOOD

BELEN

MINER

DINH

WALDRON

STOCK

ABDEL

RUBEN

PERSAUD

AMBROSE

AURELIO

VENEGAS

TIWARI

FORTE

UDDIN

TIA

CAO

TALBOT

TODAY

LANIER

GARAY

FAGUNDES

BULLARD

HAYWARD

RENTALS

MO

REES

KRUGER

YARBROUGH

GRAF

WEINER

LORI

THURMAN

BHATIA

MELVIN

ANITA

CENTRE

SHEN

CARO

PESSOA

ESCOBEDO

MURDOCK

ANTNIO

HUTTON

CONCEPCION

GIRARD

SCHULTE

ALVARENGA

BENEDICT

FERRARO

DENNY

LOURDES

LYMPHOMA

HEATHER

MOHR

LINCOLN

CROWDER

DOLORES

SWENSON

CRABTREE

QUIGLEY

GERARD

RUEDA

HAWLEY

BEAL

EVA

LATHAM

POE

PINA

RUSS

MALAYSIA

EM

HOLLINGSWORTH

ULLOA

BRAGG

BATEMAN

MCWILLIAMS

CLEMENTE

TREMBLAY

ASSESSORIA

TECHNOLOGIES

BARBOZA

CENTENO

AUGUSTINE

KOHLER

SHEFFIELD

HINSON

NEFF

ROWLEY

PAI

MCFARLANE

FLOOD

LIVE

DORAN

WISEMAN

PORRAS

STACEY

BOWLES

FERRO

CORCORAN

ATLANTA

JARA

HANDY

NEWSOME

FRESHDESK

TUDOR

OROURKE

MARROQUIN

REPORTS

ROCIO

BLANTON

GARDINER

MANSFIELD

PAR

OVIEDO

VANDER

CLEARY

REEDER

MAYA

NUMBER

MCQUEEN

BARROW

BARTH

COLVIN

DESIGNS

WATER

GENTILE

DELUCA

DIETRICH

HECTOR

MCDONNELL

QUINTANILLA

PROF

GASPAR

CHRISTIANSEN

BEYER

LINS

ROB

RIDER

RADIO

CHOWDHURY

ESTEVES

GIFFORD

FLORENCE

CLEMONS

ALENCAR

SPA

SOCCER

STILES

ESCOLA

CHAMPION

AP

VILELA

ALINA

BAR

MONTIEL

FURNITURE

ELKINS

VZQUEZ

JORGENSEN

KOWALSKI

LUCY

BELLA

FRIAS

FONTANA

VANG

COE

BETTS

DAWKINS

IMRAN

TALENT

FACUL

FONTES

EMILIO

FRAGA

ADRIANO

SPRAGUE

DOMINGUES

SANTAMARIA

FLAHERTY

SHETTY

BLISS

DOG

ELECTRONICS

TRIPP

BULL

BA

WHITING

HAMID

ADDISON

DOWLING

SALDANA

SHEARER

GOLDSMITH

ROXANA

RAINES

DUMITRU

PEARL

NEIL

MORRISSEY

CRUMP

HILLIARD

LUCIO

GUNTER

DUFF

CORNELIUS

IOANA

RECORDS

ADOLFO

TEEN

HOYT
GODDARD

MANCINI

HENLEY

ANTOINE

FENTON

SINHA

LOOK

ZIMMER

GANNON

MOSELEY

MUSA

LAZAR

PAYTON

TOLENTINO

CORMIER

PACK

RAJA

DOBBS

HOBSON

BLACKMON

MEEHAN

ECKERT

DENT

CASANOVA

HATHAWAY

BOOK

CHAVARRIA

BLOUNT

HUMAN

DOLL

STAN

INSTITUTE

SOTELO

CALVERT

MILLAN

BABCOCK

INMAN

CLINTON

PAULINO

PINO

CEZAR

NARVAEZ

AMARO

COUTURE

GOYAL

POLANCO

ASHBY

ADAIR

BRANTLEY

TRINH

BARRAGAN

CHADWICK

ROMANIA

SPIVEY

FONTAINE

HUNG

AGENT

JUDD

NAYLOR

GERALDO

SANABRIA

REGISTRATION

BARCLAY

CAMPO

NORIEGA

CENTRO

SHUKLA

PETTIT

QUESADA

JNIOR

COLES

YAP

EPSTEIN

SUMNER

TEJADA

PARIKH

LAIRD

WILKES

NOOR

FOUNTAIN

MOTT

OAKLEY

JAVED

SCHERER

RENDON

GRANGER

VIGIL

FAYE

REYNOSO

JONATHANCARON

PA

YOST

HENRIQUEZ

BELLAMY

KEEN

HINKLE

IRVING

TRINIDAD

BAUMANN

KWAN

VITALE

RALPH

BAHIA

DIEHL

YOUTH

HURT

DOSS

MONTANO

SMYTH

HYATT

LISBOA

ZELAYA

CRUISES

LOS

PAULSON

BAUMAN

PARTNER

CHESTER

PALACIO

HUMPHRIES

BALLESTEROS

ADEL

HAM

LAN

COLOMBO

GHOSH

STALEY

MENENDEZ

GRACIELA

FOOTE

GRANDE

ANTON

USMAN

BARONE

MAGNO

FEEDBACK

HIGHTOWER

CORDOBA

PERDOMO

CARRINGTON

HOFF

TOBIAS

CARLO

LORENZ

BEAVER

DUTTON

DUPONT

MAIER

CHEVROLET

LOZADA

MCKINNON

ASHTON

MOTOR

BAPTISTE

HERNAN

AKHTAR

KAUFFMAN

LYNNE

TIDWELL

PARR

STAPLETON

MICHAUD

SEGOVIA

OAKES

SOLORZANO

FUCHS

ROOT

DIALLO

DANGELO

LAGOS

NICK

COPE

BRIONES

DURAND

SONIA

GONZAGA

HAWTHORNE

JENNY

SCHMID

SHIPLEY

CARDOZO

YOLANDA

TELES

ARRINGTON

HOUSER

SHEETS

BEVERLY

HELTON

HAIDER

HORVATH

MED

HURD

KILGORE

SAINI

BOUTIQE

SIMES

PARA

URBANO

HODGSON

MARIS

BOTELHO

PUTNAM

RENNER

WRAY

DIETZ

DUGGAN

MCNALLY

HUNTERS

EPPS

AMERICAN

COREY

SULTAN

CERQUEIRA

ION

RING

JIANG

ADM

BAER

MACRI

RYDER

ESTELA

BANDA

ROS

WHALEY

HAMLIN

ORDOEZ

TARGET

DOW

LANDERS

BACH

HARMAN

GOODRICH

LINTON

SHOES

TU

CAVANAUGH

SADE

HE

NATALIA

AKBAR

BLACKMAN

MORELAND

ESTRELLA

GOINS

WHITMAN

BARTLEY

CONSULTORIA

PRESCOTT

OLIVERA

MULLIGAN

COUGHLIN

ROBERTA

HAUSER

PARRY

CHANCE

TRENT

CLOUD

MUIR

NAGEL

GAMEZ

STRINGER

BUTTS

ISAACS

BOUCHARD

YI

DALLAS

DICKENS

ZUIGA

HAYWOOD

BRYSON

MARCIO

JEN

VALDIVIA

MADSEN

AYRES

HARTMANN

LINHAS

CUZ
MEMBERSHIP

TIERNEY

IYER

DOCTOR

SAPP

SAYED

PETIT

FERRARA

BERRIOS

STEINBERG

BOLDEN

ALTAMIRANO

MESSINA

BURKETT

MALLORY

CRAVEN

STAPLES

MOREAU

MARX

SHIPPING

SHELLEY

VALERIA

LIVING

SALTER

PURDY

STEEL

MCCRACKEN

TERRA

JUDITH

GAVIN

EUBANKS

ANDY

YANEZ

HWANG

AFONSO

GUIDRY

MARTN

MEI

HILFIGER

ALTMAN

ORANGE

VIAJES

DELLA

ORNELAS

LANDIS

MCCAIN

CUTLER

COURT

NEWSLETTERS

BREEN

BARNHART

FRANZ

SAINT

COUSIN

EMANUEL

DEJESUS

MONTE

ESCAMILLA

BURROUGHS

WENDY

COMPRAS

BUNCH

TA

CASINO

IRVIN

FOUNDATION

AWAD

HENNING

MCCLENDON

PEDRAZA

TRANSPORT

PHILLIP

THAKUR

ELEMENTARY

HAGER

TIMMONS

ROMEO

ALONZO

ANDERS

PEREYRA

BRUNNER

HOUSING

VELOSO

YUSUF

RAMEY

FEDERICO

PEOPLES

POIRIER

RICKS

RICKETTS

GHEORGHE

STOREY

YUEN

APARICIO

TITUS

MISTRY

KAMINSKI

THACKER

SANTORO

CONOSCO

MUTUAL

NACIONAL

CLOTHING

ROA

CADENA

JEROME

GRAPHICS

ENNIS

ENGENHARIA

GREGORIO

FAROOQ

PASCAL

SARAIVA

LOURENO

WING

PICKERING

CASILLAS

FAITH

MCCORD

VIDA

CONNIE

CHEW

SAMS

ELIZONDO

VALLADARES

SHORE

PORTAL

COLIN

RASHEED

BOLAND

SANTO

MNDEZ

EASON

WELLER

HERNDON

GUZMN

LOVETT

CHISHOLM

BARB

MENSAH

GRAYSON

CONSULTANTS

SHAHID

SOLAR

DONOHUE

OVERTON

FS

WAKEFIELD

COACH

LAWTON

SEVILLA

FELTON

BT

ALLEY

JUSTIN

BIRCH

CORLEY

LEGAL

MAM

ULRICH

REAGAN

MUNRO

EASTMAN

MORLEY

CONTE

MATHUR

MARTINI

BERNARDES

FONTENOT

OAKS

TOMA

PENDLETON

JON

BAPTISTA

DILL

MENON

ENGLE

OH

LAWLER

CYCLES

BR

RESORT

ASLAM

MCNULTY

RENATA

JARDIM

DAMICO

PRODUCTS

LANGSTON

LEROY

ESPERANZA

MANSOUR

SCHILLING

COUNCIL

LAL

RUBY

IONUT

CHOICE

TSANG

HARGROVE

FLOREZ

WILD

MOSTAFA

AUCTIONS

SAC

BOURGEOIS

COMPUTER

CHING

MOJICA

MUNSON

MERINO

IRM

GRUBER

VEIGA

POLO

ALDANA

PRINTER

PUENTE

CROFT
NISSAN

TATIANA

STORM

GARZON

ALINE

RAMSAY

AGUSTIN

HANKINS

CRENSHAW

MESSER

ACUA

KEENE

STARKS

MAYORGA

CHILD

IVY

YOUNGBLOOD

JEFFERS

HAMEED

WHITTINGTON

SPAULDING

ARRIAGA

TOWN

PRITCHETT

THIAGO

COONEY

ROUSSEAU

CROWELL

RODAS

JANSSEN

FORRESTER

HOOKER

DEMARCO

TRACEY

MIMSDOWD

GEORGES

BOCK

PFEIFFER

DAVEY

WASHBURN

BOSCO

CARRIER

WHITLOCK

PIA

RAHIM

MANZANO

VARNER

SAUER

FLINT

CC

CERDA

LIND

AMIGA

CAPUTO

SCHULER

CABLE

REARDON

WORTHINGTON

HERRMANN

LEMON

DAGOSTINO

HILLMAN

BLANK

DOUGLASS

LADD

POSEY

MCNEAL

VALERIO

TAMMY

EMILIA

ROWAN

ASSISTANCE

TROY

VILLAR

GOULART

ARANGO

LASER

SC

SHIN

BRAZ

RUSHING

PATERSON

MALHOTRA

MCNAIR

SAMIR

ZHENG

PARISH

CHUN

ETIENNE

ROBB

MONIQUE

BUSBY

PERRIN

SONS

CATALIN

LEVI

KEYES

CORRIGAN

OSPINA

RENTERIA

MIRZA

WETZEL

BENTO

WHELAN

CORONEL

YOUSSEF

MALLOY

KEANE

MARKETPLACE

BANSAL

LAUGHLIN

HARE

TRIVEDI

MAK

STONER

LINO

MACLEOD

JILL

BAYER

BURNHAM

HOLLY

BANCO

NAIK

IRIZARRY

FREECYCLE

THOMASON

PARKINSON

DUVALL

ROBLEDO

THAYER

PAMELA

HARLEYDUNNE

CANDIDO

RUFF

CONTATO

SALON

FIERRO

FAUST

CRAIN

REPAIR

CRANDALL

MATHIEU

DEVLIN

ARIF

CHOU

LACKEY

FOOT

GODINEZ

PTE

NAPIER

RICHEY

CLANCY

BIANCO

LEARY

HUMPHREYS

FEITOSA

REBECCA

JUNE

GALICIA

CAROLYN

WALLIS

SALE

ANSWER

LEASING

IRIS

SOMMER

NANA

JONAS

TSAI

LEHMANN

KEARNS

SY

VACATION

CHECK

PAK

HUBERT

SURVEY

MCCOLLUM

OSHEA

WHITMORE

CEPEDA

JOSHUA

MEHMOOD

GREENFIELD

NICOLAE

DELL

FALCO

SANTANDER

ABAD

SPRING

GIPSON

ISLAND

DOVE

RAPP

TELLO

AMATO

LUNDY

CULVER

WOODY

LAZO

SHELL

SNEED

FRANCES

RANSOM

ANG

CORRALES

AKINS

CIFUENTES

BAIG

DES

LILIA

EARLY

DOMINGOS

SPICER

BOURNE

JOHNSTONE

PATRICIO

WAREHOUSE

SCHRADER

BARTHOLOMEW

YBARRA

BH

DOTY

FU

FLOR

VIVIANA

HOUGH

PEGGY

LODGE

FARRAR

MAS

LANCE

FABER

PARMAR

LEAHY

ALDRICH

CATES

MONAHAN

JIN

HELM

BORDEN

ALFRED

JULIANA

LYLE

DEB

SLADE

CHAUDHARY

SEGURO

LENTZ

DOMINIQUE

JOINER

RESTAURANT

PATIO

MCLAIN

MATHIAS

SCHUBERT

ABBASI

STALLINGS

KOVACS

AUNT

SQUIRES

OSWALD

CASTING

HEARN

PS

BISPO

CAMILA

SPANGLER

EBERT

REPRESENTAES

SKELTON

KHANNA

ALL

DASH

APPLE

NUNN

HAIRSTON

WOODALL

BURR

CARBAJAL

TRIMBLE

PERSON

PR

PRESLEY

WELLINGTON

SHEILA

BARRAZA

BRISCOE

IRVINE

CHEEK

SCHOFIELD

LAURIE

SANDER

LAWS

YOGA

YONG

DELONG

DAMIAN

KATHERINE

MARTENS

HUTSON

STOVALL

ALAIN

RHOADES

GRAFF

ZIMMERMANN

LAYNE

BRICE

NADEAU

PEPPER

SPRINGS

GIRON

IMOVEIS

BARAHONA

TAHIR

LAS

TEACHER

GRILL

LEDBETTER

AG

KWOK

JESS

RACING

CHAMPAGNE

HYMAN

REGIONAL

RAMALHO

EMMA

GAGE

HEIN

COMER

CATALINA

TOMAS

OBAMA

PENG

CONCURSOS

SHAHZAD

ARTE

NESBITT

RAJU

AHMADI

STRANGE

NOW

DUVAL

DARNELL

OTOOLE

TE

ELITE

DAIGLE

MARCEL

BRODERICK

PETE

COYNE

TILLEY

DELIVERY

TEXAS

MONCADA

CROOK

THURSTON

SANTILLAN

SMALLS

WOODSON

KISER

MONGE

SOURCE

SPAIN

FR

BAGLEY

ATWOOD

BGOSH

CAT

KILPATRICK

FORTIN

FREEDMAN

NOBRE

BELANGER

DAUGHTER

MARVIN

ESTER

COLEY

KELLOGG

PAES

VITAL

CARABALLO

RUDD

GOUVEIA

SANDHU

WINNER

DURANT

NUEVO

BONNIE

ABERNATHY

SHAVER

UNGER

PRATER

THAKKAR

REN

KIMBLE

KINCAID

SHI

KARLA

BECKY

UNDERGRADUATE

NERI

DEVRIES

GOODSON

BLEDSOE

BITTENCOURT

SALLES

RADER

PANG

SALERNO

BYNUM

KINSEY

OUELLETTE

FORMAN

PATHAK

LUU

EMILY

MERCIER

LUCENA

YAO

TINSLEY

DAMASCENO

NOONAN

REICH

ERIKA

CELIA

MOE

LINN

KNOTT

BROOKE

WINSLOW

ISSA

RATE

DONATO

FACULDADE

ESPINO

ZARAGOZA

CONDON

BRANNON

CALDERN

HUMMEL

MALL

GILCHRIST

KEEGAN

POLICE

THERESA

CALLAWAY

LAVOIE

COTTRELL

MUNICIPAL

CLASS

FALK

MACLEAN

TONEY

EUGENIO

PIZARRO

KNUTSON

PANDYA

VLAD

CARIBBEAN

DEVI

GARVEY

HASKINS

JULIEN

RAPHAEL

CHVEZ

GYM

WILLOUGHBY

BORJA

GAMAL

TOTAL

FORSTER

ADMINISTRATION

MICROSOFT

LUTHER

DORIS

PYLE

DION

ALLRED

PREMIUM

IS

ROWELL

PALUMBO

CORRAL

EASTON

VICK

TADEU

DUMONT

ELY

NORMA

ARENA

MATEO

DUPREE

JAMIESON

STAUFFER

SEAMAN

SB

DESMOND

CAFE

CYNTHIA

COLLAZO

MENARD

MORTGAGE

CAVAZOS

MOCK

GAFFNEY

QUEVEDO

XIONG

RUFFIN

STACK

JAMAL

REDDING

NEVILLE

PRIEST

MAGDALENA

COSMETICS

AGGARWAL

SYLVIA

GRIER

BACK

ROOM

FALLON

SAS

BRUNSON

BOYKIN

ROD

PANTOJA

FIORE

PULSE

TIO

HEDRICK

CYR

SHULTZ

ARNDT MILLARD

HAKIM

SAMPLES

HOROWITZ

MARCH

SAGE

TARIQ

RINALDI

SIMOES

SHOOK

THAI

PRINGLE

FARAH

JAEGER

SI

ARGUETA

BARBOUR

SCHAEFFER

PAQUETTE

BENEFITS

PRESIDENT

BINDER

CLEMENS

MIRIAM

ASIF

SHANE

MEANS

SOLER

STARKEY

DUBE

KELSEY

WAHL

DOZIER

MOELLER

WORTH

COHN

INFANTE

HOUGHTON

COTA

JAMESON

HARWOOD

BHATTI

CRUM

MILNER

SUREZ

CARRION

HONEY

IRMA

TENORIO

SWANN
HUSTON

FINNEY

LYLES

ANTONIA

DIGGS

UPTON

NOEMI

VYAS

LEFEBVRE

BECKMAN

MARKHAM

TEJEDA

SIMONA

MYLES

FORTUNE

BOSCH

HUDDLESTON

SECRETARIA

GRFICA

PRODUCTIONS

AR

ROBINS

GILLETTE

HENRIQUES

DERRICK
PARADISE

PARRIS

DELACRUZ

DAI

GAME

ESTEVEZ

ELLIOT

ARSHAD

SHIPMAN

SAXENA

REDMAN

KAMARA

MOSQUERA

LAWYER

RANDY

HITCHCOCK

SGT

LERNER

HOOK

LENNON

FLORA

CALDAS

FOSS

LUONG

PARENTS

AA

TEODORO

PARHAM

MOB

OLIVIA

PEACE

COMUNICAO

EMPLOYMENT

HORACIO

NEZ

NOTIFICATION

IMMIGRATION

APPAREL

VANN

HANKS

BIS

OLDHAM

ISABELLE

CHURCHILL

DELGADILLO

LOCKETT

SOPHIE

BRINK

CORNWELL

CHAND

PICKENS

KENYON

LEVESQUE

HADI

JEFFERY

GUO

AMIR

PM

MILLAR

HAQUE

HECK

BABA

FLORIDA

BONE

GOETZ

MCCLELLAND

SHAWN

SALMAN

TIRADO

PERDUE

FAISAL

RABELO

PURVIS

PHELAN

CAPPS

SMALLWOOD

SALAM

HERMANN

NOE

FANG

ECHOLS

MATEUS

WENDT

BURNETTE

GYMBOREE

IOAN

NICHOLLS

HUT

LAST

DYSON

YEN

WILDE

CARNES

NICOLETA

CARY

PARADA

CUNHADA

MOREL

MARTEL

SCRUGGS

AMIGO

SHETH

REAVES

BASHIR

HOLIDAY

GOH

MOSHER

SOUTO

CHAO

RANDLE

MCCALLUM

NASIR

SIZEMORE

JUDGE

NICKERSON

MONK

HAPPY

STEARNS

LIDIA

KELLEHER

VIANNA

RENAUD

BRUNER

VALADEZ

TABOR

MEU

CARBONE

CRYSTAL

MODI

HYLTON

LOGISTICS

RJ

SM

GUIDO

BOUDREAU

BRIDGE

BANDEIRA

NERY

SRINIVASAN

RAJAN

PARISI

LENZ

WHEATLEY

CIA

CHIANG

CECIL

SLACK

PILLAI

JERNIGAN

MUKHERJEE

JIMMY

JHA

THANH

BOUDREAUX

SEGAL

TEMPLETON

MASTERSON

GRACIA

COATS

SEE

DIEZ

COON

MCCARTNEY

WELDON

CINTRON

AREA

SEN

MCARTHUR

TIFFANY

SAMSUNG

STODDARD

COTTER

CARLIN

BADER

RADFORD

SHANKAR

JANICE

SPORT

OANA

NINA

TRIPLETT

LAING

LOUIE

FIRE

ASHER

TAHA

TOP

LOVELACE

BURNER

CLARKSON

DOUG

KRIEGER

SERVIOS

NATHALIE

NAWAZ

LATIF

CROOKS

HS

EDMONDSON

ASSOCIATION

YIP

DORMAN

CONFIRMATION

SCANLON

VIERA

YOON

LONGORIA

RENT

SH

FISCAL

JOAO

HANLON

TERAN

SALA

AJAYI

HARMS

MANCUSO

MEEK

MONDRAGON

RAND

SEALS

WYLIE

TEE

LUI

HEATON

ANCA

LOBATO

PATTY

AKRAM

LAUER

CBN

COOL

ALCALA

LUNSFORD

HOLGUIN

NURSE

HALIM

EDSON

DONG

AUGUSTIN

HERZOG

TSE

ABDALLAH

ANH

SORENSON

BEAUCHAMP

PC

HONEYCUTT

ALANIZ

SCHELL

JAIRO

GUILLORY

GROGAN

SALLY

ARNETT

OFFICER

TESTA

MOLNAR

GINA

KENNETH

SPEAR

ROJO

HOOKS

GARVIN

WHITTEN

BARBA

KA

BERLIN

ROYER

BEAM

BELLE

LEWANDOWSKI

ASKEW

PALERMO

SAHA

YVONNE

FESTAS

MARR

GALLANT

ARMOUR

DASILVA

KEMPER

ANGIE

BRANCO

GALLEGO

NASSER

TRABAJO

FABIANO

BUS

BECKETT

PANCHAL

DAO

SQUARE
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Figure 8.2: Visualization of the name embedding for the top 5000 last names,
showings a 2D projection view of the embedding (left). Insets (left to right)
highlight British 1 , African-American 2 and Hispanic 3 names.

8.2 Related Work

Word and Graph Embeddings. Neural word embedding techniques, ex-
emplified by the popular word2vec [163, 164], are now known to be effective
in capturing syntactic and semantic relationships. Levy and Goldberg [165]
found that the skipgram based word2vec embedding can be considered a ma-
trix factorization technique, with the matrix to be factored containing the
word-word point-wise mutual information. With this broad understanding of
word2vec in mind, the technique is applicable to tasks beyond those of tra-
ditional natural language processing. It can be employed whenever there is
a large amount of data consist of entities and their co-occurrence patterns.
Our work on name-embedding is such an example. Another example is Deep-
Walk [166], a novel approach for learning latent representations of vertices in
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a graph by constructing “sentences” via random walk on the graph.

8.3 Building Name Embeddings

8.3.1 Methodology

In our approach, each name part (first or last name) is embedded into high
dimensional space as a high dimensional vector using word2vec [167]. Our
hypothesis is that people have a tendency to contact people of the
same ethnicity and gender. Consequently, when using the contact lists of
millions of users as a text corpus, the resulting embedding of names would
capture this tendency by placing names of the same gender and ethnicity
close-by in the high-dimensional space.

8.3.2 Data Sources and Preparation

Datasets employed in our work are:

• Contact Lists. This set of data, here after referred to as the contact lists,
is a proprietary sample of recent and/or frequent contacts of 2 million
distinct email users of a major Internet company. To preserve privacy,
the data does not contain the owners of the contact lists.

• Census 1990. The Census 1990 dataset [168] is a public dataset from
US Census website. It records the frequently occurring surnames from
US Census 1990. This dataset contains 4,725 popular female names and
1,219 popular male names.

• Census 2000. The Census 2000 dataset [169] is another public dataset
from US Census website. It contains the frequently occurring 151,672
surnames from US Census 2000. Associated with each name is a dis-
tribution over six categories of races. The races are: White, Black,
Asian/Pacific Islander (API), American Indian/Alaskan Native (AIAN),
Two or more races (2PRACE), and Hispanics. In this study we refer to
the races and ethnicity interchangeably.

Data Preparation. The contact lists include substantial noise in the
name fields [170]. To improve the quality and integrity of the contact list
data, we apply the following data cleaning processes to the original data fol-
lowing the guidance of US Census 2000 demographic report [171]: (1) Remove
non-English characters; (2) Remove known special appellations, such as “Dr”,
“Mr”, “MD”, “JR”, “I”, “II” and “III”; (3) Remove middle names. First
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name is the first part of a full name, and last name is the last part of it. For
example, for name “Margarita M. Alvarez”, only “Margarita” and “Alvarez”
will be kept. After data cleaning and removing lists containing no names, 92%
of the lists remains.

8.3.3 Word2vec Embeddings

The word2vec software [172] is an efficient tool to learn the distributed rep-
resentation of words for large text corpus. It comes with two models: the
Continuous Bag-of-Words model (CBOW) and the Skip-Gram (SG) model.
The CBOW model predicts the current word based on the context while the
Skip-Gram model does the inverse and maximizes classification of a word based
on another word in the same context [163].

We start our analysis by using the cleaned contact lists and the word2vec
software [172]. Each contact list is treated as a sentence, and together they
form a text corpus. Unless otherwise stated, all results in the study are based
on the CBOW model with the default word2vec parameter settings (see Sec-
tion 8.3.4 for comparison of different models). The output of word2vec is a
dense matrix of dimension 517, 539× 100, with each unique name represented
as a row of the matrix.

Embedding Visualization. To understand the landscape of the name
embeddings, we visualize the names as a 2D map. We used the stochastic
neighborhood embedding [173] to reduce the original 100-dimensional embed-
ding to 2D. We assign each name to a cluster using gender/ethnicity ground
truth, and created the maps using gvmap [174].

Figure 8.1 (left) illustrates the landscape of first names. This visualization
establishes that the embedding places names of the same gender close-by. Us-
ing Census data, we color male names orange, female names pink, and names
with unknown gender gray. Overall names of the same gender form mostly
contiguous regions, indicating that the embedding correctly capture gender
information by placing names of the same gender close-by. Figure 8.1 (right)
is an inset showing a region along the male/female border. We can see that
“Ollie”, which is considered a predominantly female name [175] per Census
data (2:1 ratio of female/male instances), is placed in the male region, close
to the male/female border.

we found that “Ollie” is more often a male name, and used as a nickname
for “Oliver” or “Olivia”. Hence our embedding is correct in placing it near
the border. The embedding also correctly placed “Imani” and “Darian”, two
names not labelled by the Census data, near the border, but in the female/male
regions, respectively. Per [175], “Imani” is a African name of Arabic origin,
and can be both female and male, mainly female; “Darian” can also be female
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and male, but mainly male, and is a variant of “Daren” and “Darien”, among
others.

Fig. 8.2 (left) presents a map of the top 5000 last-names. We color a name
according to the dominant racial classification from the Census data. The top
5000 names contain four races: White (pink), African-American (orange), His-
panic (yellow), and Asian (green). Names without a dominant race are colored
gray. The three cutouts in Fig. 8.2 highlight the homogeneity of regions by cul-
tural group. The embedding clearly places White, Hispanic and Asian in large
contiguous regions. African-American names are more dispersed. Interest-
ingly, there are two distinct Asian regions in the map. Fig. 8.3 presents insets
for these two regions, revealing that one cluster consists of Chinese names and
the other Indian names. Overall, Fig. 8.1 and Fig. 8.2 show that our name
embeddings capture gender and ethnicity information well.

Figure 8.3: The two distinct Asian clusters. Left: Chinese/South Asian names
( 4 in Fig. 8.2). Right: Indian names ( 5 Fig. 8.2).

8.3.4 Evaluation of Different Word2vec Embeddings

The embedding from word2vec is influenced by two factors: (1) the input text,
and (2) the word2vec parameter settings. To understand how these two factors
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Variation Popularity Gender Ethnicity (NN(1))
NN(1) NN(10) P (W |W ) P (B|B) P (A|A) P (H|H)

CBOW joint 0.6434(0.0007) 0.9092 0.9360 0.9362 0.5939 0.7626 0.7543
SG joint 0.6747(0.0002) 0.8844 0.9274 0.9461 0.4561 0.7208 0.7543
CBOW sep 0.6675(0.0003) 0.9162 0.9350 0.9299 0.4437 0.7167 0.6710
SG sep 0.5776(0.0001) 0.8844 0.9205 0.9217 0.3451 0.6797 0.6971

Table 8.2: Evaluation of different embedding variants. The bold text means
the best value of each column.

influence the embedding, we evaluate the following variants of the word2vec
embeddings:

• Set the word2vec model to be CBOW or SG.

• Generating joint embeddings of first names and last names using the
contact lists as they are (“CBOW joint” or “SG joint”).

• Generating embedding for first names and last names separately by in-
cluding only first/last names in the contact lists (“CBOW sep” or “SG
sep”).

Metrics. To evaluate the quality of the embeddings with regard to look-
alike names, we propose three metrics to measure gender, ethnicity and pop-
ularity similarities between real and look-alike names.

• Gender Similarity. The gender similarity is measured by precision at k,
defined as the percentage of the k-nearest neighbors of a name having
the same gender as the name itself.

• Ethnicity Similarity. The ethnicity similarity is calculated by precision at
1. For example, the precision for White names is defined as P (W |W ) =
P (1st NN is White|original name is White).

• Popularity Similarity. The popularity similarity is computed by the
Jensen-Shannon Divergence (JSD) between name frequency distribu-
tion in real name population and name frequency distribution in nearest
neighbors population (which describes how frequent a name appears in
other name’s nearest neighbor). To be specific, we sample 10k names
randomly from the name list, with sampling probability proportional to
real name frequency distribution. Then we record ten nearest neighbors
(NN) for each of them and build the nearest neighbors population. We
repeat this process 20 times and report the mean and deviation of JSD.

Results. We present the evaluation results in Table 8.2. As we expected,
the joint variants generally perform best. However the differences between
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the embedding variants are seen as relatively minor. In addition, the CBOW
model generally outperformed the SG model for the majority of the nearest
neighbor tests. Given these observations, in this study by default we use
“CBOW joint” Note that while P (B|B) (35%-59%) is generally much lower
than P (W |W ) (92%-94%), considering that a randomly picked name from the
contact list has a probability of 74% of being White but only a probability of
3% of being Black, P (B|B) is actually significantly above the probability of a
random name being black.

8.4 Properties of Name Embeddings

Earlier, in Fig. 8.1 and Fig. 8.2, we have provided visual evidence that the
embedding is coherent, in the sense that it places names of similar gender
and ethnicity close-by. In Section 8.3.4 we have also seen aggregate numerical
evidence of this coherence. In this section we evaluate the coherence of the
name embedding quantitatively and in more detail.

8.4.1 Gender Coherence and Analysis

We first examine the gender coherence of a subset of first names and their
ten nearest neighbors. This subset of first names is the intersection between
contact lists and Census 1990. It contains 1,146 unique male first names and
4,009 unique female first names. All names in the subset are ranked by their
popularity as measured in the Census 1990 data. Table 8.3 shows the gender
coherence results, measured by precision at k, as a function of the population
of the names, and k, the number of nearest neighbors. For example, the cell
at {≤ 20%, 2} of Table 8.3 (left) reads 97. It means that for the top 20%
most popular names, 97% of their nearest 2-neighbors have the same gender
as them.

To save space, we only report the first two significant digits of each precision
(e.g., 0.9742 becomes 97). In addition we color the cells of the tables based
on the values. Within each table, we use warm colors for high values and cold
color for low values. This gives us heat-maps through which it is easier to see
the trend of how the precision varies with popularity of the first name, and
the number of neighbors.

From Table 8.3, we observe that our proposed name embedding scheme
shows strong gender coherence, especially for popular names. As we can see
from the tables, the percentage of neighbors that have same gender as the
original first name is very high for the top 30% most popular names comparing
to a randomly assigned name (50%). On the other hand, the percentage
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Top % 1 2 3 4 5 6 7 8 9 10
≤ 10% 100 99 98 98 98 98 98 98 98 98
≤ 20% 99 97 96 96 95 95 95 95 95 95
≤ 30% 96 95 94 93 93 92 93 92 92 91
≤ 40% 93 93 91 90 90 89 89 89 88 88
≤ 50% 89 89 86 85 85 84 84 84 83 83
≤ 60% 86 86 84 83 82 82 82 81 81 80
≤ 70% 82 81 79 79 78 77 77 76 76 76
≤ 80% 79 78 76 75 74 74 74 73 73 72
≤ 90% 76 75 73 73 72 71 71 71 70 70

All 73 72 70 69 69 68 68 67 67 67

Top % 1 2 3 4 5 6 7 8 9 10
≤ 10% 97 97 97 96 95 95 95 95 95 95
≤ 20% 91 91 91 90 89 89 89 89 88 88
≤ 30% 85 84 84 84 83 83 82 82 82 81
≤ 40% 80 79 79 78 78 77 77 77 76 76
≤ 50% 75 74 74 73 73 72 72 72 71 71
≤ 60% 69 69 68 68 67 67 66 66 66 66
≤ 70% 66 65 66 65 64 64 63 63 63 63
≤ 80% 62 61 61 61 60 60 59 59 59 59
≤ 90% 59 59 59 58 58 57 57 57 57 57

All 57 56 56 56 55 55 55 54 54 54

Table 8.3: Gender coherence of the name embedding for males (left) and
females (right), as measured by the percentage of k-neighbors being male or
female.

decreases when unpopular names are included, and also decreasing as the
number of neighbors increases.

8.4.2 Ethnicity Coherence and Analysis

We evaluate the ethnicity coherence by examining the ethnicity of a last name
and its ten nearest neighbors. The evaluation is based on the intersected last
names between Census 2000 and the contact list. The coherence values are
computed by the percentage of nearest neighbors that have same ethnicity as a
query name itself. To better understand the coherence trend, we use the same
strategy as with gender coherence analysis, and examine the precision as a
function of the popularity of the names, and the size of nearest neighbors. The
results are presented in Table 8.4. In general, the top neighbors of a popular
name tend to have a high probability of being in the same ethnicity group.
The coherence for an ethnic group correlates positively with the popularity
of the group in the contact lists. The coherence for AIAN and 2PRACE are
poor, because they only account for 0.1% and 0.05% of the last names in the
contact lists. Thus there is too little data to get the embedding correctly.

8.4.3 Name Popularity Analysis

We define two types of frequencies. The real name frequency is the frequency
of names in the Contact list. The replacement usage frequency is the frequency
of a name in the replacement name population. To measure the popularity
preserving of word embedding, we calculate the real name frequency of a name
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(R), the average real name frequency of its replacement names (ten nearest
neighbors) (A), and its replacement usage frequency (U).

Two measurements, Pearson’s correlation coefficient (PCC) and Spear-
man’s rank correlation coefficient (SCC), are used to measure how well the
popularity is preserved. The results are shown in Table 8.5. For example,
R vs U means the correlation between the real name frequency and the re-
placement usage frequency. Overall we can see that the correlation between
the real name frequency R and the replacement usage frequency U is higher
than that for the real name frequency R and its neighbors’ real name frequency
A. This indicates that a popular name is very likely to appear in among the
nearest neighbors of other names, even though its nearest neighbors are not
necessarily popular names. A visualization of the relationship between the
frequency of real names and replacements are given in the Appndix.

8.5 Cultural Coherence Mining

The visualizations of Figures 8.1 and 8.2, and quantitative analysis in the pre-
vious section have confirmed that our name embedding is able to capture both
gender and ethnicity coherence information. Since the embedding is gener-
ated in a completely unsupervised manner by applying word2vec to millions
email contact lists, it is surprising that the embedding can capture gender
and ethnicity so well. Our hypothesis is that in aggregate, users exhibit a
preference to communicate with people of the same ethnicity and
gender. In this section we attempt to verify this hypothesis.

8.5.1 Coherence in Gender Distribution

One important aspect of a name is its associated gender. To identify a name’s
gender, the first name is always preferred than last name in demographic
studies [176]. Here, we follow this popular rule and use the first name to
identify the gender of a given full name. The gender of a name could be male,
female or unknown. The “unknown” names could be human names with no
known ground truth gender, or non-human names, for example, “Microsoft”
or “Amazon”. To avoid the bias of any specific machine learning classifiers,
we rely on dictionary look-up method to identify the gender of a name using
the Census 1990 data.

To start with, we look at the gender distribution of the contact lists as a
function of the length of the contact list. Fig. 8.4 shows the average percentage
of males as a function of the length of the contact lists (red dot curve), as well
as as a function of the length of gender-identifiable names in the lists(blue
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dot curve). It is seen that the longer the list, the less percentage of males
it contains. We conjecture that the female users tend to have more contacts
than male users. Second, we want to know the difference between the observed
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Figure 8.4: Left: the expectation of male name percentage as a function of
the size of identified names (blue) and contact list lengths (red). Right: count
of contact lists as a function of the size of gender identified names (blue) and
contact list lengths (red).

contact lists and a randomly generated contact list. Our hypothesis is that
users’ contact lists exhibit a bias towards either male domination, or female
domination. To test this hypothesis, we look at the frequency distribution of
percentage of males in our mailing list, and compare with the null hypothesis.
In Fig. 8.5 (left), we divide contact lists by a threshold based on the minimum
number T of identifiable genders in the list. E.g., T = 5 means those contact
lists with at least five gender-identifiable names. The distributions of the ratio
of identifiable males in the contact lists with T = 5 and 10 are seen as the
two lower curves. Clearly, the majority of the contact list has around 50%
males. However, looking at these distribution along would not tell us whether
the distributions have any bias. For this purpose, we need to compare them
with the null hypothesis.

We generate the null distribution by assigning the gender of a name ran-
domly following the gender distribution of the contact list. As a result, for a
contact list with the number of identified names s equals to i and a probability
of male of pm, the probability that this list has j males is the binomial:

p(m = j|s = i) = Cj
i p

j
m(1− pm)i−j.

Since the number of identified names varies for different contact lists, the
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probability of having a ratio of x ∈ [0, 1] male in the contact lists is:

p(x) =

∑21
i=1

∑
k=i∗x is integer p(s = i)p(m = k|s = i)∑21
i=1

∑i
j=1 p(s = i)p(m = j|s = i)

. (8.1)

Here p(s = i) is the percentage of contact lists having exactly i gender iden-
tifiable names. Fig. 8.5 (left) shows that the distributions based on the null
hypothesis (the two higher curves) are spikier, with around 30% of the contact
lists having 50% of males, compared with the observed 15%. Fig. 8.5 (right)
shows the deviation of the observed distribution from the null hypothesis. It
shows a clear bimodal pattern, confirming our hypothesis that contact lists on
average exhibit a bias towards either male domination, or female domination,
especially the latter.

To further verify the gender bias in observed contact lists, we model the
observed number of males in all contact lists as a Binomial mixture model.
Basically we assume that number of males in a contact list that we observe
is generated by one of two separate Binomial distributions with different pa-
rameters, one representing female users and the other representing male users.
We run Expectation-Maximization algorithm to find the best set of model
parameters that explains the observed data most accurately. Here we only
consider contact lists with more than 5 identifiable genders. After the EM
algorithm converges, we generate synthetic data from the model and plot it
alongside with the observed data in Figure 8.5. We observe that model fits
the observed data quite well. Also the parameters of the fitted model suggest
a strong gender-bias in contact lists, such that the probability of a contact
in a male user’s contact lists being male is 0.61, whereas the probability of a
contact in a female user’s contact lists being male is 0.27. The results also
suggest that 47% of the observed contact lists belong to male users and 53%
belongs to female users.

8.5.2 Coherence in Ethnicity Distribution

Another important aspect of a name is its ethnicity. While first names often
reveal the gender, last names give a strong signal about ethnicity. In this sub-
section, we study the ethnicity distribution of the contact lists. We use Census
2000 data set as ground truth and perform a similar look-up classification as
we did for the gender analysis.

Just like the case for gender, we conjecture that users’ contact lists on
average exhibit a bias towards one ethnicity. To test this hypothesis, we look at
the frequency distribution of percentage of a particular ethnicity in our mailing
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list, and compare with the null hypothesis. The null hypothesis is constructed
just like in the case for genders. Take the Hispanic ethnicity as an example.
They constitute 14.75% of the names in the contact lists, so we set pm = 0.1475
in (8.1). This allow us to plot the distribution for the null hypothesis, and
compare with the observed Hispanic distribution. Fig. 8.6 shows the deviation
of the observed distribution from the null hypothesis for “Black”, “API” and
“Hispanics” ethnic groups. It confirms that the contact lists have a tendency
of containing lists that have higher than expected percentage of one of these
ethnic groups, even though the bias is not quite as pronounced as in the case
of genders.

8.6 Applications

Beyond the obvious applications of name embeddings as features for training
classifiers and other models, we have employed name embeddings in two dif-
ferent security/privacy applications of generating realistic names respecting
cultural constraints.

8.6.1 Replacement Name Generation

In replacement name generation, for a given a particular name (f, l) we seek
to construct a look-alike name (f ′, l′) with similar properties and veracity.

This task comes from a computer security application at a large Internet
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company. How might an email user who lost their password be able to convince
the account provider of their identity as part of account recovery process?
We reasoned that the genuine account holder should be able to distinguish
the actual email contacts they have corresponded with from a background of
imitation names. But this is only effective when the background names are
culturally indistinguishable from the contacts, a property which did not hold
under naive random name generation methods, as shown in Figure 8.7.

We propose to generated names preserve ethnic and cultural properties of
the real contacts that they replace (middle), by finding replacement names
among the nearest neighbors of the real contacts. For example “Amanda”
is close to “Amy”, and “Hsu” is close to “Chiang”. With this scheme, the
guessing task for attacker remains hard, because the imitation names look
very similar to the real contacts.

8.6.2 De Novo Name Generation

A related class of applications concerns generating large sets of plausible names
without starting templates, to serve as demonstration identities in information
processing systems.

A synthetic name generation algorithm should have the following proper-
ties:

• Scale – The algorithm should be able to generate an arbitrarily large
number of names, without high levels of repetition.

• Respect population-level frequency-of-use statistics – First name and last
name tokens should be generated as per names in the target population.
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Real Contacts Proposed Challenge Naive Challenge
Angela Chiang Amanda Hsu John Sander
Paresh Singh Nirav Sharma Steve Pignootti
Charles Wan Charles Wan Charles Wan
Yuda Lin Joko Yu Jeff Guibeaux
Lin Wong Hua Li Sam Khilkevich
Tony Kuang David Feng Mary Lopez
Hua Yim Jie Fung Ron Clemens

Figure 8.7: A security challenge question: “pick someone you contacted among
the followings”. Left: the contact list of a hypothetical user wendy wong@.
Middle: a replacement list generated using the technique proposed in this
study (retaining one real contact Charles Wan). Right: a naively generated
random replacement list. It is very easy to pick out the only Asian name
“Charles Wan” from Naive Challenge.
• Culturally-appropriate first/last-name linkage – As we have seen, name

token usage is not independent, but conditionally linked.

• Privacy preservation – No linkage between real and synthetic identities
is permitted.

We propose the following approach. We construct a batch of m names
simultaneously, where m = 100 is an appropriate value. We randomly sample
m first and last name components as per the population distribution, here
generated according to the U.S. Census distribution. We use the embedding-
similarity between name components to weigh a complete m × m bipartite
graph. By computing a maximum weight bipartite matching, we get m syn-
thetic names with linkage informed by the geometry of the name embedding.
The detail algorithm of de novo names generation can be described as follow-
ing:

Table 8.6 presents a comparison of the first 25 synthetic men and women
names produced by our methods versus http://listofrandomnames.com. We
conducted a study by searching for each of the full names in Google and
checking how many results are returned. Our rationale is that a plausible
name should appear more often on the web than an implausible one. In the
table, we marked in bold names that has at least 100 matches in Google
search. In addition we use red color to show names that have no matchs at
all. Clearly our name generator performs much better, with 47 bold names vs
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Algorithm 17: De novo names generation algorithm.

Input: A set of full names: S = {(f1, l1), (f2, l2), · · · , (fn, ln)} = (F ,L);
Name embedding vectors; Number of required look-like names:
K; Name batch size: m; Name popularity threshold: T .

Output: Number K look-alike full names: U .
1 Calculate the frequency of unique first names in F and unique last

names in L.
2 Build the cumulative distribution function(CDF) of top T first names

and last names.

3 for i← 1 to K
m

do
4 Randomly select m first names from F following the CDF of first

names.
5 Randomly select m last names from L following the CDF of last

names.
6 Build a bipartite graph of first names vs. last names, with edge

weight the cosine similarity per word2vec.
7 Find the best matches through Maximum weighted bipartite

matching algorithm.
8 Add the resulted best matching into U .

9 end
10 return U .

18 for http://listofrandomnames.com.

8.7 Chapter Summary

In this chapter, we propose a new technique for generating look-alike names
through distributed name embeddings. By training on millions of email contact
lists, our embeddings establish gender and cultural locality among names.
The embeddings make possible construction of replacement aliases for any
given name that preserve gender and cultural identity. Through large-scale
analysis of contact lists, we establish that there is a greater than expected
concentration of names of the same gender and race for all major groupings
under study. Using the techniques developed in this study, we have constructed
a collection of synthetic names, which will be released as an open resource upon
the publication of this manuscript.
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Top % 1 2 3 4 5 6 7 8 9 10
≤10% 96 96 96 96 96 96 96 96 96 96
≤20% 96 96 96 96 96 96 96 96 96 96
≤30% 96 96 96 96 96 96 96 96 96 96
≤40% 96 96 96 96 96 96 96 96 96 96
≤50% 95 95 95 95 95 95 95 95 95 95
≤60% 95 95 95 95 95 95 95 95 95 95
≤70% 95 95 95 95 95 95 95 95 95 95
≤80% 94 94 94 94 94 94 94 94 94 94
≤90% 94 94 94 94 94 94 94 94 94 94

All 94 94 94 94 94 94 94 94 94 94
White

Top % 1 2 3 4 5 6 7 8 9 10
≤10% 62 59 57 55 54 53 52 52 51 50
≤20% 65 63 60 59 58 58 57 57 56 56
≤30% 63 62 61 60 59 59 58 58 58 57
≤40% 63 62 61 60 59 59 59 59 59 58
≤50% 62 61 60 60 59 59 58 58 58 58
≤60% 61 61 60 60 59 59 58 58 58 58
≤70% 61 61 60 59 59 59 58 58 58 58
≤80% 60 60 59 59 58 58 58 58 57 57
≤90% 60 59 59 59 58 58 58 57 57 57

All 59 59 59 59 58 58 58 57 57 57
Black

Top % 1 2 3 4 5 6 7 8 9 10
≤10% 90 91 91 91 91 91 91 91 91 91
≤20% 89 89 89 89 89 89 89 89 89 89
≤30% 86 85 86 86 86 86 86 86 86 86
≤40% 83 83 84 84 84 84 84 84 84 84
≤50% 81 81 81 81 82 82 82 82 81 81
≤60% 80 80 80 80 80 80 80 80 80 80
≤70% 79 79 79 79 79 79 79 79 79 79
≤80% 78 78 78 78 78 78 78 78 78 78
≤90% 77 77 77 77 77 77 77 77 77 77

All 76 76 76 76 76 76 76 76 76 76
API

Top % 1 2 3 4 5 6 7 8 9 10
≤10% 19 19 22 22 22 21 20 20 19 18
≤20% 17 19 20 19 18 17 16 16 15 14
≤30% 15 18 18 17 16 15 14 14 13 13
≤40% 13 15 15 14 14 13 12 12 11 10
≤50% 12 13 13 11 11 11 10 10 9 9
≤60% 11 12 11 10 10 10 9 9 8 8
≤70% 10 11 10 10 9 9 8 8 7 7
≤80% 9 10 9 9 8 8 7 7 6 6
≤90% 9 9 9 8 8 7 7 7 6 6

All 8 9 8 8 7 7 6 6 6 6
AIAN

Top % 1 2 3 4 5 6 7 8 9 10
≤10% 54 46 44 44 45 46 47 47 45 45
≤20% 54 50 49 49 49 49 51 51 50 50
≤30% 56 53 52 51 51 51 52 52 50 50
≤40% 54 51 52 52 52 52 52 52 50 51
≤50% 58 52 54 55 54 54 53 54 52 53
≤60% 58 51 50 53 52 51 51 51 50 51
≤70% 57 52 53 54 53 52 52 52 51 52
≤80% 56 51 51 52 51 50 51 51 51 51
≤90% 53 49 50 50 50 49 49 50 49 49

All 51 48 49 49 48 47 48 48 48 48
2PRACE

Top % 1 2 3 4 5 6 7 8 9 10
≤10% 97 97 97 96 96 96 96 96 95 95
≤20% 95 94 94 94 94 94 93 93 93 93
≤30% 91 91 91 90 91 90 90 90 90 90
≤40% 89 89 88 88 88 88 88 88 88 88
≤50% 86 86 86 86 86 86 86 86 85 85
≤60% 83 83 83 83 83 83 83 82 82 82
≤70% 81 80 81 81 81 81 81 80 80 80
≤80% 79 79 79 79 79 79 79 79 79 79
≤90% 77 77 77 77 77 77 77 77 77 77

All 75 76 76 76 76 76 76 76 75 75
Hispanic

Table 8.4: Percentage of k-nearest (k = 1, 2, . . . , 10) neighbors of a name
that has the same ethnicity as itself, when restricting the name in the top p-
percent (p = 10, 20, . . . , 90, All) of names. API: Asian/Pacific Islander. AIAN:
American Indian/Alaska Native. 2PRace: two or more races.
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PCC SCC
R vs A R vs U R vs A R vs U

First names 0.5813 0.7795 0.5170 0.5402
Last names 0.2260 0.4454 0.3444 0.3916

Table 8.5: Correlation of real names and replacement names frequencies.

listofrandomnames.com Embedding-based de novo generation
Male Female Male Female

Keith Albro Sibyl Bjork Reginald Bouldin Ethel Agnew
Sonny Bordner Amie Corrao Max Bowling Mabel Beaudoin

Stanley Brummond Joselyn Custard Dale Depriest Jolanda Boring
Reuben Carlucci Marvella Deese Richard Diefenderfer Lori Butz

Darrell Chatmon Holly Delman Michael Doutt Diana Chao
Jeffry Egnor Kayleigh Derr Randall Drain Cynthia Clay
Russel Foye Eugenia Fahnestock Anthony Hattabaugh Karin Combes
Hank Fries Clemmie Formica Henry Humbert Krista Emmons

Patrick Gazaway Gigi Fredericksen Jeremy Jacobsen Rebecca Gagnon
Roy Gilman Marylyn Gersten Jeffrey Jimenez Betty Grant

Federico Gulley Elisabeth Harkness Brian Kerns Ruth Griffin
Adalberto Hakes Almeda Ivy Ronald King Nancy Lantz

Sylvester Kammer Dot Klingbeil Elton Kolling Joann Larsen
Tanner Lundblad Shay Krom Robert Kuhls Deborah Lovell

Jarod Man Tessie Kush Fred Lawyer Carla Mccourt
Lee Mcclintock Providencia Laughter Raymond Middleton Caroline Mclaney

Elvin Mcwhirt Merlyn Lovings Andres Morales Denise Murders
Harry Nino Milda Marcos John Morales Mary Navarro

Preston Pickle Sierra Olivieri Alvin Morrison Margarita Reyes
Edgar Ramer Pennie Pasquale Patrick Mulvey Brenda Rock
Rafael Rasheed Mallory Peralta Victor Rahn Selina Rubin

Earnest Robert Manda Stetz Nick Shick Opal Sinkfield
Ryan Seiber Lissette Torrey Howard Siegel Denise Stephens
Kraig Tullos Zelda Vanderburg Daniel Spady Doretha Thurmond

Howard Welk Hee Weast Patricia Vargas Serina Webb

Table 8.6: Comparison of our de novo generated synthetic names and ran-
dom names from website http://listofrandomnames.com. Bold names are
mentioned over 100 times on the web, while red colored names appear in zero
documents.
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Chapter 9

Conclusion and Ongoing Works

This chapter summarizes our finished works and the future research directions.
Our works focus on seeking sparse graph representation for real-world data.
The ideal goal is to find a parameter-free method which can model the struc-
ture of data accurately and succinctly. Our algorithms are demonstrated to be
efficient and scalable. They will have many potential applications in machine
learning and data mining research area.

9.1 Contribution Summary

Our research works can be divided into three parts: (1) sparse graph represen-
tation, (2) graph structure analysis, and (3) applications. For the first part,
we present three novel sparse graph representation algorithms. The proposed
methods have competitive performance over original L1 graph and with lower
construction cost. For the second part, we discuss the importance of dense
subgraph when analyzing the structure of graph. This analysis is the key to
understand the information presented in the data. For the last part, we suc-
cessfully apply our research works to the application of unsupervised feature
selection. Our proposed algorithms have great potential in semi-unsupervised
learning research and graph data mining research. To be specific, our contri-
butions include:

• We present an efficient locality preserving sparse graph construction al-
gorithm to improve the spectral clustering performance.

• We demonstrate a structure preserving algorithm to generate sparse
graph by using diffusion distance to capture the manifold structure of
data, and compare the performance with Euclidean distance as metric.
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• We introduce a greedy algorithm based on ranked dictionary to solve the
scalable issue of constructing L1 graph.

• We propose a graph-based algorithm to solve the multi-source data in-
tegration problem in computational biology research. Our proposed
method use the idea of semi-supervised learning to predict the labels
of unlabeled data samples.

• We develop the robustness local subgraph to differentiate subgraphs with
different sizes topologies. A greedy approach and heuristic local search
algorithm are proposed to find all those robustness local subgraphs.

• We propose sparse feature graph to remove the redundant features for
high dimensional data and reduce the dimensionality without calculat-
ing the pairwise distance between samples. This is very useful for high
dimensional data as the quality of nearest neighbors becomes low when
the size of dimensionality goes high.

The three novel sparse graph representation methods can be summarized
as following:

Name Distance metric L1 solver Summary
LOP-L1 Euclidean Non-greedy good for #samples ≤ 1000
SA-L1 Diffusion Non-greedy good for #samples ≤ 1000
Greedy-L1 Euclidean/Diffusion Greedy good for #samples ≥ 1000

Table 9.1: Summary of different sparse graph representation methods.

We also summarize the spectral clustering performance difference of them
in the Table 9.3. For the results of LOP-L1 graph and SA-L1 graph in this
table, we remove the non-negative constraint of sparse representation coeffi-
cient. From the results, we see that the Greedy-L1 with Euclidean distance
has general better performance.

9.2 On-going Works

There are still many immediate and valuable research topics that can be in-
cluded into our current works. The following are several potential subjects
that can be directly extended from the works we have done so far.
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9.2.1 Subspace Learning with Sparse Graph

Similar to the graph construction process in Locally Linear Embedding (LLE),
the L1 graph characterizes the neighborhood reconstruction relationship. In
LLE, the graph is constructed by reconstructing each data sample with its
k nearest neighbors of the samples within the ε-ball based on the `2 norm.
LLE and its linear extension, called neighborhood preserving embedding
(NPE) [177], both rely on the global graph parameter (k or ε). Following the
idea of NPE algorithm, L1 graph can be used to develop a subspace learning
algorithm as follows.

The general purpose of subspace learning is to search for a transfor-
mation matrix P ∈ Rm×d(usually d � m) for transforming the original
high-dimensional data sample into another low-dimensional one. L1 graph
uncovers the underlying sparse reconstruction relationship of each data
sample, and it is desirable to preserve these reconstruction relationships in
the dimensionality reduced feature space. Note that in the dimension reduced
feature space, the reconstruction capability is measure by `2 norm instead
of `1 norm for computational efficiency. Then the pursuit of transformation
matrix can be formulated as the following optimization problem:

min
PTXXTP=I

N∑
i=1

‖P Txi −
N∑
j=1

WijP
T
xj
‖2, (9.1)

where Wij is determined by the constructed L1 graph. This optimization
problem can be solved with generalized eigenvalue decomposition approach
as:

XMXTpm+1−j = λjXX
Tpm+1−j, (9.2)

where M = (I −W )T (I −W ), and pm+1−j is the eigenvector corresponding to
the jth largest eigenvalue λj as well as the (m+ 1− j)th column vector of the
matrix P . The derived transformation matrix is then used for dimensionality
reduction as:

yi = P Txi (9.3)

where yi is the corresponding low-dimensional representation of the sample
xi and finally the classification process is performed in this low-dimensional
feature space with reduced computational cost.
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9.2.2 Semi-supervised Learning with Sparse Graph

L1 graph is proved to be robustness with data noises and empirically has
the potential to convey more discriminative information compared with
conventional graphs based on k-nearest neighbor or ε-ball method [22].
These properties make L1 graph a good candidate for propagating the label
information from labeled data to unlabeled data. Semi-supervised learning
recently has attracted much attention, and is widely used for both regression
and classification purposes. The main idea of semi-supervised learning is
to utilize unlabeled data to improve the classification and generalization
capability on the testing data. Commonly, the unlabeled data is used as an
extra regularization term to the objective function which is from traditional
supervised learning algorithms.

The unlabeled data are used to enlarge the vertex number of the L1

graph, and further enhance the robustness of the graph. Finally, the L1 graph
based on both labeled and unlabeled data is used to develop semi-supervised
learning algorithm. Here, we take marginal Fisher analysis(MFA) [178] as an
example for the supervised part in semi-supervised learning. Similar to the
philosophy [179], the objective for L1 graph based semi-supervised learning is
defined as:

min
P

γSc(P ) + (1− γ)
N∑
i=1

‖P Txi −
N∑
j=1

WijP
Txj‖2

Sp(P )
, (9.4)

where γ ∈ (0, 1) is a threshold for balancing the supervised term and L1 graph
regularization term, and the supervised part is defined as:

Sc(P ) =
∑
i

∑
j∈N+

k1
(i)

‖P Txi − P Txj‖2, (9.5)

Sp(P ) =
∑
i

∑
(i,j)∈Pk2

(li)

‖P Txi − P Txj‖2, (9.6)

where Sc indicates the intraclass compactness, which is represented as the sum
of distances between each point and its neighbors of the same class and N+

k1
(i)

is the index set of the K1 nearest neighbors of the sample xi in the same class,
Sp indicates the separability of different classes, which is characterized as the
sum of distances between the marginal points and their neighboring points
of different classes and Pk2(l) is a set of data pairs that are the k2 nearest
pairs among the set (i, j), li = l, lj 6= l, and W is the weight matrix of the L1

graph. The optimal solution can be obtained via the generalized eigenvalue
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decomposition method, and the derived projection matrix P is then used for
dimensional reduction and consequent data classification.

9.2.3 Diffusion-based Learning

The algorithm introduced in last section 9.2.2 uses sparse graph as a penalty
graph to learn a projection matrix P . With this projection matrix, both
the labeled data and unlabeled data can be projected into a new space
where intraclass data samples are close to each other and interclass data
samples are far away. However, the most famous semi-supervised learning
algorithms are based on label diffusion (propagation) over the constructed
graph [180] [181] [182]. In this section, we introduce several popular and
important graph diffusion algorithms and tools.

Zhou’s Diffusions. Zhou et al. [180] propose the following diffusion
method:

F = (I − αS)−1Y, (9.7)

where I is the unit matrix, S is the graph Laplacian, and Y is the label
matrix which Yi,j = 1 if node i has label j and Yi,j = 0 otherwise. F is the
resulted labeled matrix.

Joachim’s Diffusion. Joachims [181] proposes a new diffusion equation
as:

F = (DY + S)−1Y, (9.8)

where DY is the a diagonal matrix with the row-sums of Y on the diagonal.
S is the graph Laplacian.

ZGL’s diffusion. Zhu et al. [182] proposed the following diffusion way to
predict the label of j-th class.

minimize 1
2
yTSy

subject to yi =


1 if node i labeled in class j
0 if node i labeled in another class
free otherwise

(9.9)

Heat Diffusion. Heat diffusion is a diffusion process originate from physi-
cal science. It describes the way how heat flows from one place to other places.
The definition of heat diffusion is based on the heat equation:

∂Ht

∂t
= −∆MHt, (9.10)
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where ∆M is the Laplace-Beltrami operator over Riemannian manifoldM,
and Ht = e−tS is the heat kernel. S = D−1A where A is the adjacent matrix
of graph which describe (approximate) the geometry of manifold M. The
above definitions of heat equation and heat kernel over manifold are same
with definition over a general graph [183].

The heat kernel can be re-formulated as:

Ht(i, j) =
∑
p=1

e−λptφp(i)φp(j), (9.11)

where λp is the p-th eigenvalue and φp is the p-th eigenvector of Laplacian S.
Ht(i, j) calculates the amount of heat being transferred from i to j in time t
given a unit heat source at i in the very beginning.

Heat Kernel Signature. Sun et al. [184] propose the heat kernel signa-
ture (HKS) with the following definition:

Ht(i) = Ht(i, i) =
∑
p=1

e−λptφp(i)
2. (9.12)

The physical meaning of HKS is the amount of heat i keeps within itself at
time t. The heat diffusion process states that heat tends to diffuse slower at
point with sparse neighborhood and faster at point with denser neighbor hood.
Therefore, HKS can intuitively depict the local density of each point (or graph
node).

9.3 Future Research Directions

In long term, we expect to extend our sparse graph representation framework
to have the characteristic of “scalability”, and let it can handle very large-sized
data in real-world applications. Three potential directions will be streaming
algorithms [185], stretch [186] and hashing algorithms [187]. Improving the
graph quality from the theory perspective is also an challenging research in
data mining and machine learning research [188]. The sparse graph generated
by our algorithms can be seen as the skeleton of data’s structure, which means
we still have space to improve the graph connectivity. The quality of them
can be improved through edge connection manipulations following the require-
ments of specified mining or learning task as discussed in [7]. Around this,
dense subgraph mining technique is the key to let us know “where” should we
start the operation.
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