Sparse Graph Representation and Its Applications
A Dissertation presented
by
Shuchu Han
to
The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Doctor of Philosophy
in

Computer Science

Stony Brook University

May 2017

(include this copyright page only if you are selecting copyright through ProQuest, which is optional)

Copyright by
Shuchu Han
2017

Stony Brook University
The Graduate School
Shuchu Han
We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend
acceptance of this dissertation

Hong Qin - Dissertation Advisor
Professor, Department of Computer Science

Fusheng Wang - Chairperson of Defense
Assistant Professor, Department of Computer Science

Dimitris Samaras
Associate Professor, Department of Computer Science

Francesco Orabona
Assistant Professor, Department of Computer Science

Robert J. Harrison
Professor, Director of Institute for Advanced Computational Science

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

i

Abstract of the Dissertation
Sparse Graph Representation and Its Applications
by
Shuchu Han

Doctor of Philosophy

in
Computer Science
Stony Brook University

2017

The structure of real-world data (in the form of feature matrix) includes
crucial information relevant to the performance of machine learning and data
mining algorithms. The structure could be local manifold structure, global
structure or discriminative information based on the requirements of learning
or mining tasks. To model this intrinsic structure, an effective graph represen-
tation like k-nearest neighbor graph is necessary. Considering the increasing
data size in this digital era, efficient sparse graph representations without pa-
rameter tuning are very demanding.

In this thesis, we build novel sparse and nonparametric graph represen-
tation algorithms for unsupervised learning. The theory foundation of our
research works is the similarity graph of Sparse Subspace Clustering. Our re-
search works focus on: (1) alleviate the negative impacts of losing subspace
structure assumption about the data: remove non-local edges and generate
consistent edge connections, (2) solve the scalability issue for large size data:
apply greedy algorithm with ranked dictionaries, (3) applications in unsuper-
vised learning: redundant feature removal for high dimensional data.

Moreover, this thesis includes graph structure analysis which connects to
the quality of graph following Dense Subgraph theory: (1) data label estima-
tion through dense subgraphs for semi-supervised learning, (2) graph robust-
ness which can differentiate the topology and scale of subgraphs.

1l

To my wife, Ying, and my family, for their endless love and support.

Contents

List of Figures
List of Tables
Acknowledgements
Publications

Introduction

1.1 Problem Statement
1.2 Research Challenges
1.3 Research Contributions
1.4 Dissertation Organization

Background Review

2.1 Graph Construction Methods for Similarity Measures
2.2 Ly Minimization.
2.3 Spectral Embedding and Clustering
2.4 Dense Subgraph oo Lo

Locality-Preserving and Structure-Aware £; Graphs
3.1 Chapter Introduction oL
3.2 Related Workso
3.3 LOP-L£y Graph
3.4 SA-Ly Graph
3.0 Experiments
3.5.1 Experiment Setup
3.5.2 Analysis of Basis Pool Scaling
3.5.3 Performance of LOP-£; Graph
3.5.4 Performance of SA-£; Graph
3.6 Chapter Summary

4 Greedy Sparse Graph by Using Ranked Dictionary 28

4.1 Chapter Introduction 28
4.2 Unstable Solutions caused by Different £, Solvers 31
4.3 Algorithm 31
4.3.1 Ranked Dictionary 32
4.3.2 Greedy £y Graph 34
4.3.3 Connection to Subspace Clustering 35
4.3.4 Connection to Locally Linear Embedding 35
4.3.5 Spectral Clustering Performance 37
4.4 Experimentso 38
4.4.1 Small-sized Data 39
4.4.2 Large-sized Data and Multiple Classes Data 41
4.5 Chapter Summary 44
5 Dense Subgraph based Multi-source Data Integration 45
5.1 Chapter Introduction 46
5.2 Related Works 47
5.3 Data 49
54 Algorithm 51
5.4.1 Expression Value Model o1
5.4.2 Problem Definition 51
5.4.3 Assumption 52
5.4.4 Co-analysis Framework 54
5.4.5 Improved Ratio-based Method 55
5.5 Validation Lo 56
5.6 Experiments 59
5.7 Chapter Summary 60
6 Mining Robust Local Subgraphs in Large Graphs 61
6.1 Chapter Introduction 0L 61
6.2 Related Workso 63
6.3 Robust Local Subgraphs 64
6.3.1 Graph Robustness 64
6.3.2 Problem Definition 66
6.4 Robust Local Subgraph Mining 71
6.4.1 Greedy Top-down Search Approach 71
6.4.2 Greedy Randomized Adaptive Search Procedure (GRASP)
Approach 76
6.5 Evaluations o 80
6.6 Chapter Summary 85

vi

7 Sparse Feature Graph 88

7.1 Chapter Introduction 88
7.2 Related Works oo 91
7.3 Background and Preliminaries 91
7.3.1 Unsupervised Feature Selection 91
7.3.2 Adaptive Structure Learning for High Dimensional Data 92
7.3.3 Redundant Features 93
7.4 Problem Statement 0oL 94
7.5 Algorithm 94
7.5.1 Sparse Feature Graph (SFG) 94
7.5.2 Sparse Representation Error 96
7.5.3 Local Compressible Subgraph 98
7.5.4 Redundant Feature Removal 99
7.6 Experiments 99
7.6.1 Experiment Setup 99
7.6.2 Effectiveness of Redundant Features Removal 100
7.6.3 Performance of MCFS 103
7.6.4 Sparse Representation Errors 103
7.7 Chapter Summary 105
8 Capturing Properties of Names with Distributed Representa-
tions 107
8.1 Chapter Introduction 107
8.2 Related Work 110
8.3 Building Name Embeddings 111
8.3.1 Methodology 111
8.3.2 Data Sources and Preparation 111
8.3.3 Word2vec Embeddings 112
8.3.4 Evaluation of Different Word2vec Embeddings 113
8.4 Properties of Name Embeddings 115
8.4.1 Gender Coherence and Analysis 115
8.4.2 Ethnicity Coherence and Analysis 116
8.4.3 Name Popularity Analysis 116
8.5 Cultural Coherence Mining 117
8.5.1 Coherence in Gender Distribution 117
8.5.2 Coherence in Ethnicity Distribution 119
8.6 Applications 120
8.6.1 Replacement Name Generation 120
8.6.2 De Novo Name Generation 121
8.7 Chapter Summary 123

vil

9 Conclusion and Ongoing Works 126

9.1 Contribution Summary 126
9.2 On-going Works o 127
9.2.1 Subspace Learning with Sparse Graph 129
9.2.2 Semi-supervised Learning with Sparse Graph 130
9.2.3 Diffusion-based Learning 131
9.3 Future Research Directions 132
Bibliography 134

viil

List of Figures

1.1

3.1

3.2

3.3

3.4

3.5

The framework of this research work. The problem we are solv-
ing is in the second block from left.

Mlustration of LOP-L; effectiveness compared with Gaussian
(similarity) graph and classic £4. The labels of sample in the
original dataset (Fig.3.1(b)) are showed in Fig.3.1(a), and in this
example we only focus on the coding of point p (the 150-th sam-
ple, marked as red cross in Fig.3.1(b)). Coding (similarity) of
p on Gaussian graph (Fig.3.1(c)) is built upon Euclidean space,
which leads to manifold non-awareness (Fig.3.1(d)). Classic
L graph coding (Fig.3.1(e)) results in the loss of locality and
therefore instable clustering result (Fig.3.1(f)). Comparatively,
our LOP-£; coding on p (Fig.3.1(g)) shows strongly locality-
preserving characteristic and has the best performance in clus-
tering, as shown in Fig.3.1(h).
Scalability comparison between LOP-L£; graph and classic £,
graph.
Dictionary normalization of two moon dataset. The red and
blue points represent different clusters. Left: before normaliza-
tion, right: after normalization. We can see that the neighbor-
hood information is changed after normalization..
Ly graph (Left) and SA-L£; graph (Right,K = 10) of “two
moon” dataset. Lo
The change of NMI values w.r.t different selection of parameter
t. Red dot in each subplot represents the maximal NMI. These
experiments confirm that a basis neighborhood with certain size
(with smaller ¢) provides better (or at least similar) performance
than the overcomplete basis pool (with the maximal ¢ in each
subplot).

X

15

19

20

21

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

5.4

5.5

5.6
5.7

Connection of Greedy L£; graph to other graphs. Several of
them are: kNN-fused Lasso graph [1], Group Sparse (GS) £
graph, Kernelized Group Sparse (KGS) £; graph [2], Laplacian
Regularized (LR) £; graph [3] and Locality Preserving (LOP)
Lygraph [4].. o
L1 graphs generated by different construction algorithms. From
left to right: 2D toy dataset; £ graph; Greedy-£; graph with
Euclidean metric (K=15); Greedy-£, graph with Diffusion met-
ric (K=15). .o oo o
Ranked dictionary. Left: eight data samples have the same di-
rection but with different length. Red cross is the target data
sample for calculating sparse coefficients. Right: after normal-
ization, those eight data samples have the same location. . . .
The range difference of “Ranked Dictionary” (RD), “kNN” and
original “£; graph”. The toy dataset include two subspace S1
and S2. The selection range of nearest neighbors is shown by
dash circles.
Running time of different £; graph construction algorithms.
Top: original £; graph construction algorithm. Bottom: the
construction of £; graph using greedy solver.
The impact of graph sparsity to spectral clustering performance.
Left: graph sparsity vs. NMI and ACC. Right: £; solver ap-
proximation error vs. graph sparsity.

Left: GSE19804; Right: GSE19188; Top row: correlation (PCC)
heat map, samples are sorted from non-tumor to tumor sam-
ples; Middle row: pdf of a random gene (GeneBank ID:U48705).
Bottom row: correlation values distribution.
Left: Input bipartite graph; Right: extracted optimal quasi-
clique; Blue nodes: known non-tumor samples; Gray nodes:
unlabeled samples. oL
Resulted optimal quasi-clique of Lung cancer dataset.G = (|V| =
35, |E| = 287). The top two rows list the estimated (fake) non-

Difference of gene U48705 before (left) and after (right) applying
IRB by reference sample GSM475732.
The pdf difference of gene U48705. pdf before (left) and after
(right) applying IRB.The value offset is -10.4113.
The pdf of GSE10072 by estimated(fake) non-tumor samples .
Correlation heat map of Lung cancer data. Top: original data.
Bottom: after batch effect removal by IRB.

29

30

33

38

41

44

53

57

o8

o8
o8

6.1

6.2

6.3
6.4

6.5
6.6

6.7

6.8

7.1

7.2
7.3

7.4

7.5

7.6

7.7

7.8

Example graphs with the same density but different robustness, i.e.
topology. L.
Robustness vs. density of 100,000 connected subgraphs on a real
email graph.
Relation between A(G) and Vigin « « « « « o o v v v e
Robustness gap (%) of GRASP-RLS over (top to bottom) LS,
Greedy, and Charikar on all graphs.
Subgraph robustness at varying sizes s.
p-values of significance tests indicate that w.h.p. subgraphs we find
are in fact significantly robust.o o000 L
X achieved at GRASP-RLS-CONSTRUCTION versus after GRASP-
RLS-LOCALSEARCH. o v v i i oo e
Scalability of GRASP-RLS by graph size m and subgraph size s
(mean running time avg’ed over 10 independent runs, bars depict

O5U-T50). + + e e e

The framework of sparse learning based unsupervised feature
selection.
Sparse learning bipartite graph for MCFS.
Unsupervised Feature Selection with Adaptive Structure Learn-

Sparse feature graph and its relation with indication vectors.
Level 1 features are direct sparse representation of those calcu-
lated indication vectors. Level 2 features only have representa-
tion relationship with level 1 features but not with indication
VeCTOrS. L
[lustration of sparse representation error. SFG is a weighted
directed graph.
Spectral clustering performance of image datasets with different
parameter . Top row: NMI; Middle row: ACC; Bottom row:
number of features, the red dash line means the size of raw
dataset. L
Spectral clustering performance of text datasets with different
parameter #. Top row: NMI; Middle row: ACC; Bottom row:
number of features, the red dash line means the size of raw
dataset.
Spectral clustering performance of biomedical datasets with dif-
ferent parameter ¢. Top row: NMI; Middle row: ACC; Bottom
row: number of features, the red dash line means the size of raw
dataset.

x1

65

66
70

82
83

84

84

85

91
92

93

95

97

101

102

7.9

8.1

8.2

8.3

8.4

8.5

8.6

8.7

The distribution of angle between original feature vector and
its sparse representation.

Visualization of the name embedding for the most frequent
5,000 first names from email contact data, showings a 2D pro-
jection view of name embedding (left). The pink color repre-
sents male names while orange denotes female names. Gray
names have unknown gender. The right figure presents a close
view along the male-female border, centered around African-
American names.
Visualization of the name embedding for the top 5000 last names,
showings a 2D projection view of the embedding (left). Insets
(left to right) highlight British , African-American and
Hispanic |3 |names.
The two distinct Asian clusters. Left: Chinese/South Asian
names ([4]in Fig. 8.2). Right: Indian names (5] Fig. 8.2).

Left: the expectation of male name percentage as a function of
the size of identified names (blue) and contact list lengths (red).
Right: count of contact lists as a function of the size of gender
identified names (blue) and contact list lengths (red).
Left: the distribution of user’s gender in contact lists data. Dis-
tributions with legend “R” are from binomial distribution with
probability 0.5. Distributions with legend “G” are from bino-
mial mixture model with parameters inferred using EM algo-
rithm. Other distributions are from observation in the contact
lists. Right: deviation from the null hypothesis.
Deviation between observed distribution of percentage of names
in ethnic groups “Black”, “API” and “Hispanics”, and the dis-
tribution from the null hypothesis, showing a bimodal pattern.
A security challenge question: “pick someone you contacted
among the followings”. Left: the contact list of a hypothetical
user wendy_wong@. Middle: a replacement list generated using
the technique proposed in this study (retaining one real contact
Charles Wan). Right: a naively generated random replacement
list. It is very easy to pick out the only Asian name “Charles
Wan” from Naive Challenge.

xii

106

110

113

118

120

121

List of Tables

3.1
3.2

3.3

3.4

4.1

4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1
5.2
5.3
5.4

Datasets Statistics. oL
NMI comparison of LOP-£; graph and other three graph con-
struction methods. L oo
Accuracy comparison of LOP-£; graph and other three graph
construction methods. 0L
Clustering performance of SA-L; graph construction algorithms.
Ly graph is the baseline.

The effect of unstable solutions caused by using different solvers
or with different parameters.
Statistics of small-sized datasets.
NMI comparison of graph construction algorithms. M is the
number of attributes.o o000
ACC comparison of different graph construction algorithms. M
is the number of attributes.
Graph sparsity comparison of different graph construction al-
gorithms. M is the number of attributes.
The statistics of three large datasets and two multiple classes
datasets. L

NMI results of spectral clustering with different similarity graphs.

M 1is the number of attributes.

ACC results of spectral clustering with different similarity graphs.

M is the number of attributes.
Graph sparsity results of different similarity graphs. M is the
number of attributes.o Lo
Running time of different similarity graphs. M is the number
of attributes.

Frequent math notations.
Lung cancer dataset. N'T: non-tumor, T: lung tumor.
Information of the Iconix dataset; N'T: non-tumor, T: tumor.

Prediction performance of Lung cancer dataset

xiil

26

31
39

40

40

40

42

43

43

43

47
50
50
29

5.5

6.1
6.2

6.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

8.1

8.2

8.3

Prediction performance of Iconix dataset

Real-world graphs. 6: density, \: robustness
Comparison of robust and densest subgraphs. Ch: Charikar [5], Gr:
Greedy [6], Ls: Local search [6].
Robust DBLP subgraphs returned by our GRASP-RLS algorithm
when seeded with the indicated authors.

High dimensional datasets.
NMI results of “ORL” dataset
ACC results of “ORL” dataset.
NMI results of “Yale” dataset
ACC results of “Yale” dataset.
NMI results of “PIE10P” dataset
ACC results of “PIE10P” dataset.
NMI results of “ORL10P” dataset
ACC results of “ORL10P” dataset.
NMI results of “Lymphoma” dataset
ACC results of “Lymphoma” dataset.
NMI results of “LUNG” dataset
ACC results of “LUNG” dataset.
NMI results of “Carcinom” dataset
ACC results of “Carcinom” dataset.
NMI results of “CLL-SUB-111" dataset
ACC results of “CLL-SUB-111" dataset.

The five nearest neighbors (NN) of representative male and fe-
male names in embedding space, showing how they preserve
associations among Asian (Chinese, Korean, Japanese, Viet-
namese), British, European (Spanish, Italian), Middle Eastern
(Arabic, Hebrew), North American (African-American, Native
American, Contemporary), and Corporate/Entity.
Evaluation of different embedding variants. The bold text means
the best value of each column.
Gender coherence of the name embedding for males (left) and
females (right), as measured by the percentage of k-neighbors
being male or female.

Xiv

86

87

99
104
104
104
104
104
104
104
104
105
105
105
105
105
105
105
105

108

114

116

8.4

8.5
8.6

9.1
9.2

9.3

Percentage of k-nearest (k = 1,2,...,10) neighbors of a name

that has the same ethnicity as itself, when restricting the name

in the top p-percent (p = 10,20,...,90, All) of names. API:
Asian /Pacific Islander. ATAN: American Indian/Alaska Native.
2PRace: two or more races. 124
Correlation of real names and replacement names frequencies. 125
Comparison of our de novo generated synthetic names and ran-

dom names from website http://listofrandomnames.com. Bold
names are mentioned over 100 times on the web, while red col-

ored names appear in zero documents. 125
Summary of different sparse graph representation methods. . . 127
NMI performance comparison. Bold values mean the best per-
formance. 128
ACC performance comparison. Bold values mean the best per-
formance. 128

XV

http://listofrandomnames.com

Acknowledgements

Before the completion of this thesis, I received tremendous help and support
from many individuals, to whom I want to express my sincere gratitude here.

I would like to express my sincere gratitude to my thesis advisor, Hong Qin,
for being an excellent mentor during my studies. He showed such kindness and
patience that I can not imagine myself completing this dissertation without
his inspiration, encouragement and guidance.

I am grateful to my thesis committee members Fusheng Wang, Dimitris
Samaras, Francesco Orabona and Robert Harrison for their time and effort
in providing me with invaluable feedback in putting together and improving
my thesis. I particularly thank Francesco for giving me many suggestions and
feedbacks about my thesis.

I am honored to have this unique opportunity of studying at Stony Brook
University on this dissertation. I am grateful to many professors from whom I
have learned invaluable new knowledge and numerous skills, including: Steven
Skiena, Leman Akoglu, Francesco Orabona, Mike Ferdman, Ker-I Ko, David
(Xianfeng) Gu and Himanshu Gupta. I am particularity indebted to Steve,
who advised me on algorithm and social science research at Yahoo Labs. 1
cannot thank Steve enough for his advising, help and life wisdom shared with
me. [also feel extremely fortunate to work with Leman, for teaching me
graph mining, showing me how to approach a problem and how to precisely
formulate and write it down, as well as mentoring me to accomplish high
quality research. Moreover, I want to thank Cynthia Scalzo for helping life
run smoothly at SBU, and handling all administrative work seamlessly.

My internship at Yahoo Labs gives me the opportunity to work closely
with top researchers in industry. I wholeheartedly thank my mentor Yifan
Hu, for offering me this chance and advising me on data mining and scientific
visualization research. I also thank my friends at Yahoo Labs for their kindness
to me, including: Baris Coskun, Meizhu Liu, Francesco Orabona, Guy Halawi,
Ruggiero Cavallo, Alina Beygelzimer, David Pal, Zohar Karnin, Justin Thaler,
Edo Liberty, Maxim Sviridenko, Joel Tetreaul and Amanda Stent. The time
I spent on the 14th floor is an indelible memory in my life.

I would also like to thank Computational Science Center of Brookhaven
National Lab for funding my PhD research. I thank Dantong Yu for offering
me a job which supports my study. I met many great colleagues over there,
including: David Stampf, Shinjae Yoo, Yan Li, Wei Xu, Dimitri Katramantos,
Nicholas D’lmperio, Mike McGuigan, Lauri Peragine and Robert Harrison. I
also thank Rafael Perez and Robert Riccobono from Information Technology
Division, for those days we spent together at the noisy data center.

It has also been a great pleasure knowing many friends at Stony Brook
University, especially Hao Huang, Ming Zhong, Ming Chen, Chia-Che Tsai,
William (Bill) Jannen, Junting Ye, Rui Shi, Yufen Ren, Jin Xu, Li Shi, Zhen-
zhou Peng, Tan Li, Shun Yao and Cheng Chang. I particularity thank Hao
Huang for sharing his knowledge and experience of machine learning research
with me.

Before join Stony Brook University, I was introduced to the joys of research
by several advisors, including: Ying He and Changyun Wen from Nanyang
Technological University, and Chengjing Zhang from Shandong University.
Without their support and advising, I definitely cannot move so far in my
research career.

Last, but certainly not least, I am grateful to my family. They have been so
selfless in supporting me at all stages of my life. Particularly, I thank my wife,
Ying Zhou, who has sacrificed so much for me. This dissertation is dedicated
to them.

Publications

e Shuchu Han, Yifan Hu, Steven Skiena, Baris Coskun, Meizhu Liu and
Hong Qin. “Capturing Properties of Names with Distributed Represen-
tations”, (in preparation)

e Shuchu Han, Hao Huang, Hong Qin, “Automatically Redundant Fea-
tures Removal for Unsupervised Feature Selection via Sparse Feature
Graph”. (submitted to ACM TKDD 2017)

e Junting Ye, Shuchu Han, Yifan Hu, Baris Coskun, Meizhu Liu, Hong
Qin and Steven Skiena, “Nationality Classification using Name Embed-
dings”. (submitted to ACM KDD 2017)

e Shuchu Han,Yifan Hu, Steven Skiena, Baris Coskun, Meizhu Liu. “Gen-
erating Look-alike Names via Distributed Representations”. Yahoo Tech
Pulse, 2016.

e Shuchu Han, Hong Qin. “A Greedy Algorithm to Construct Sparse
Graph by Using Ranked Dictionary.” International Journal of Data Sci-
ence and Analytics, 2016.

e Shuchu Han, Hong Qin. “A Greedy Algorithm to Construct L1 Graph
with Ranked Dictionary.” Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining (PAKDD), 2016.

e Shuchu Han, Hong Qin. “Structure Aware L1 Graph for Data Cluster-
ing.” Thirtieth AAATI Conference on Artificial Intelligence. 2016. (stu-
dent abstract)

e Chan, Hau, Shuchu Han, Leman Akoglu. “Where graph topology mat-
ters: the robust subgraph problem.” Proceedings of the 2015 STAM inter-
national conference on data mining, SDM. Vol. 15. 2015.(Best Research
Paper Award)

xviil

e Shuchu Han, Hao Huang, Hong Qin. “Locality-preserving l1-graph
and its application in clustering.” Proceedings of the 30th Annual ACM
Symposium on Applied Computing. ACM, 2015.

e Shuchu Han, Hong Qin, and Dantong Yu. “An Improved Ratio-Based
(IRB) Batch Effects Removal Algorithm for Cancer Data in a Co-Analysis
Framework.” Bioinformatics and Bioengineering (BIBE), 2014 IEEE In-
ternational Conference on. IEEE, 2014. (Best Student Paper Award)

Xix

Chapter 1

Introduction

1.1 Problem Statement

Graph-based algorithms have played an important role in machine learning
and data mining research, for example, semi-supervised learning, transduc-
tive learning, spectral clustering and unsupervised feature selection. All of
them require a graph representation which models the structure of data as
input. This can be illustrated by Figure 1.1. How to generate a quality graph
representation from the input data is still an open problem and remains to
be solved [7]. This challenge is caused by the lack of theory support [8] and
very few well accepted metrics to measure the quality [9]. Moreover, in most
applications, graphs are constructed based on the user’s own experience and
judgment after considering the goal of learning and mining tasks. As a result,
most graph representations are very arbitrary, and the quality of them is not
guaranteed. With this observation, we find out that the quality of graph rep-
resentation becomes the performance bottleneck for many machine learning
and data mining algorithms.

Graph-based
—> learning & mining —> knowledge
algorithms

Graph

Input data > .
pu representation

Figure 1.1: The framework of this research work. The problem we are solving
is in the second block from left.

In general, the process of graph construction includes two steps: (1) define
a distance metric for data vectors (we assume data samples are represented
by real value data vectors in this thesis). (2) define a rule to generate edges
(or which connects which in plain language). Based on the type of input
data, existing graph representation methods can be classified into two groups:

(1) labeled data methods and (2) unlabeled data methods. For labeled data,
the distance metric, or weight of edges, will be learned from data, includ-
ing: information-theoretic metric learning (ITML) [10], large margin nearest
neighbor (LMNN) [11], inference driven metric learning (IDML) [12], linear
neighborhood [13], regular graph with b-matching [14], fitting a graph to vec-
tor data [15] and graph kernel [16]. For unlabeled data, global neighborhood
methods are used, for example, k-nearest neighbor (kNN) graph, e-ball graph,
kernel graph, empty region graph [17], relative neighbor graph [18], Gabriel
graph [19], -skeletons graph [20], o-local graph [21], £; graph [22] and etc.

In this thesis, we study the problem of how to represent the structure
of unlabeled data with sparse graph. Ideally, we hope our new graph
generation algorithms could have the following three properties: (1) sparsity:
for computational efficiency. (2) scalability: for big data. (3) accuracy: for
exploring the structure of data. To satisfy these requirements, £, graph be-
comes our best candidate as it is born with sparsity naturally and robustness
to data noise. L£; graph is proposed by Cheng et al. [22] and attracts much
attention of researchers in computer vision research. It seeks a sparse linear
reconstruction of each data vector with other data vectors by exploiting the
sparse property of lasso penalty [23]. In theory, £i-graph is the similarity
graph of sparse subspace clustering (SCC) [24] [25]. It is constructed on a
modified sparse representation framework [26], and based on a group of mixed
theories including sparse linear representation algorithms from statistical sig-
nal processing community [27] [28] [29] [30] and compressive sensing [31] from
signal processing research.

The construction of £; graph includes n times of optimization processes,
where the value n equals to the number of data samples (vectors) in input
data. Given data: X = [z, T2, -+, ®,] € R x; € R the optimization
process of £ graph is:

min ||a;||; subject to x; = ', (1.1)
o

where dictionary ® = [Ty, -+, Ti_1,Tiy1,- - Tn], a; € R"!is the sparse
code of x; and ¢; is the approximation error. These sparse codes are the edge
weights of resulted £, graph. As we can see from minimization (1.1), the
neighbors of vertex x; are sparse as a result of /; norm constraint. Another
observation is that the minimization (1.1) looks for a linear construction of
x; by using all other data vectors. This phenomenon is called "data self-
representation”. One advantage of this is that the neighborhood of each datum
will adapt to the data structure itself.

1.2 Research Challenges

The original £; graph is the similarity graph of sparse subspace clustering
algorithm. It claims to have sparsity character and a nonparametric graph
generation algorithm. Several advantages of £; graph are [22]: (1) Robustness
to data noise comparing to graphs that are constructed by using pair-wise dis-
tance, such as kNN graph, (2) Sparsity, and (3) Datum-adaptive neighborhood.
The success of £, graph requires the input data to have subspace structure.
Several type of data like image data or rigid motion data may satisfy this re-
quirement but other types may not. Since we lose this subspace assumption,
the constructed sparse graph may include lots of meaningless edge connections
(or linear construction).

Recently, several challenges of £, graph when applying it to general data
are discussed, there are:

1. Existence of non-local edge connections. The local manifold structure of
data is ignored [32] [1] as it only captures subspace structure.

2. Lack of scalability by its high computational cost [22]. As we can see
from Equation (1.1), for each data vector, it solves a ¢;-norm minimiza-
tion problem which is an iterative optimization process and very time
consuming.

3. Inconsistent edge connections and edge weights. While calculating the
sparse representation for each data vector, ¢;-minimization solver will
pick one representation (atom) randomly if the dictionary exists a group
of highly correlated atoms (data vectors) [33]. Moreover, If there are
duplicate data vectors, the solver will return only one edge connection
to one of its duplications [22].

4. The success of £ graph is based on the assumption that data has sub-
space structure. For data without this assumption, the linear sparse
representation (reconstruction) returned from ¢;-minimization solver is
wrong and the edge connections and weights are meaningless. As a re-
sult, noisy edge connections will exist in the generated graph.

1.3 Research Contributions

In this dissertation, we present novel sparse graph representations to model
the structure of data. Our proposed algorithms don’t make any assumption
about the input data comparing to the original £; graph which requires the

data to have subspace structure. Particularly, the contributions of this thesis
are summarized as follows:

1. We first alleviate the existing of non-local edges problem by limiting the
dictionary of sparse representation to its nearest neighbors under Eu-
clidean distance. With this “hard” constraint, the edge connections are
forced to occur within local neighbors. Our observation from experiment
results shows that the locality of data is well preserved by adding this
constraint. Moreover, with a small-sized dictionary, the construction of
L1 graph becomes more efficient. However, we bring an additional pa-
rameter about the size of dictionary into original £; graph construction.

2. Selecting dictionary locally based on Euclidean distance is suitable for
data that has convex cluster boundary. However, for data with non-
convex cluster shapes, Euclidean distance has a risk to bring data vectors
(atoms) belonging to other clusters into the current dictionary for sparse
coding. Here, the manifold structure of data becomes critical. We then
propose diffusion distance to capture the geometry shape of input data.
This structural aware approach is proved to be very efficient for clustering
data with explicit non-convex geometry shapes.

3. Scalability is an urgent and not yet solved problem for original £; graph
construction algorithm as it involves many (linearly increasing with data
size) optimization (sparse coding) processes which are time consuming.
With recent research works in subspace learning about greedy ¢; min-
imization solver, we propose a greedy algorithm based on orthogonal
Matching Pursuit (OMP) solver and ranked dictionaries to accelerate
the construction of £, graph. The advantages of our algorithm is that
it not only speeds up the construction but also solves the inconsistent
edge connection problem.

4. We also invest our research effort in graph structure analysis and apply
it into downstream applications. We propose a graph-based algorithm
for one computational biology application. The goal is to remove Batch
Effect which exists among Microarray experiment data from different
sources. A sparse graph is first constructed from the data and then we
use the dense subgraphs extracted from the data. Moreover, we pro-
pose robust local subgraph by using robustness as density measurement.
Comparing to the dense subgraphs defined by classical edge density,
the robustness metric not only can measure the difference of subgraph
topologies, but also can differentiate the subgraph size.

5. We successfully apply our sparse graph representation works to high di-
mensional data which has more features than samples. The goal is to
remove the redundant features existed in high dimensional data. The
proposed sparse feature graph is a natural way to encode the group re-
dundancy among features. This group redundancy is always neglected
by pairwise redundancy which is more popular in machine learning re-
search. Our research work combines the sparse graph representation
and dense subgraph mining techniques, and demonstrates to be a very
efficient tool for redundant feature removal.

1.4 Dissertation Organization

The remainder of this thesis is organized as follows. In Chapter 2, we review
different graph construction methods in machine learning research and the
/1 minimization problem. Moreover, we review the dense subgraph mining
techniques that are related to our future research on graph structure analy-
sis. In Chapter 3, we propose an improved version of £y graph with locality
preserved. At the same time, we also evaluate the quality of generated graph
for spectral clustering by using different distance metrics. In Chapter 4, we
introduce a greedy algorithm to construct sparse graph with ranked dictio-
nary. In Chapter 5, we present an application in computational biology by
using graph algorithm to remove batch effects among Microarray experiment
data from different sources. In Chapter 6, we use robustness metric to define
the edge density of dense subgraphs, and a heuristic algorithm to search those
robustness subgraphs. In Chapter 7, we propose sparse feature graph to model
the feature redundancy existed in high dimensional data, and present a dense
subgraph based approach to locating the redundant feature groups. In Chap-
ter 8, we introduce a graph embedding research work in social science research.
Finally, we conclude this thesis and outline some future research directions in
Chapter 9.

Chapter 2

Background Review

Our research works are based on £; graph from sparse subspace clustering, £,
minimization, spectral embedding and clustering and dense subgraph theory.
In this chapter, we briefly review the basic ideas of related techniques and
analyze their properties.

2.1 Graph Construction Methods for Similar-
ity Measures

For graph-based learning algorithms, a graph is required to represent the sim-
ilarity among data vectors (here we assume each data sample is represented
by a real value data vector). The “Similarity” and “Distance” are reversed
relationship: high similarity means short distance. Given a set of data vec-
tors, and a distance metric in this vector space, a graph representation can be
constructed by following a special edge construction rule. And with different
rules, we have different graph construction methods. In this section, we briefly
introduce several well-known graph construction methods.

Assume the input data is: X = [z, @2, -+, @], where x; € R?, and a
distance metric d(x;, ;) is defined over the space R"*?, then we can construct
different graph representations by following methods:

kNN graph. This graph connects each data sample to its first k£ nearest
neighbors based on distance d(zx;, ;).

e-ball graph. This graph selects edge/no-edge between two data vectors by
their distance: d(xz;, ;) <e.

L1 graph. L, graph seeks a sparse linear reconstruction for each data vector
with all other data vectors by exploiting the sparse property of the Lasso
penalty [23]. This is fundamentally different from the traditional ones as
the edge connections and edge weights are pure numerical results form £,
minimization solver.

The £, graph construction algorithm [22] can be described by:

Algorithm 1: £,-Graph
Input : Feature matrix: X = [z, @2, -+, ®,] € R”", where z; € R%.
Output: Adjacency matrix W of £; graph.

1 Normalization: normalize each data vector x; to has unit length:
[@i][2 = 1;

2 L1 minimization: For each vector x;, its sparse coding coefficients are
calculate by solving the following optimization:

minai ai”la s.t. HCL'Z — @’a’HQ S €,

where matrix ®° = [T, «+y Ti_1, Tip1, -+ Tp] € RO
a' € R ! and ¢; is the approximation error;

3 Graph edge weight setting: Denote W = (V| E), where V' is the set
of data vectors as graph vertices, and E is the set of weighted edges.
We set edge weight from x; to @; by a'(j), where 1 < j <n,j #i.
(non-negativity constraints may be imposed for a’(j) in optimization
if for similarity measurement). If i < j, edge weight of (z;, x;) is:
E(i,j) = ai(j - 1);

As we can see, for each data vector, we need to solve a ¢; minimization
problem. This optimization process can be solved in polynomial time by stan-
dard linear programming method.

2.2 L4 Minimization.

L1 minimization is a classical problem in optimization and signal process-
ing communities. In compressive sensing theory, it has been shown to be
an efficient approach to recover sparest solutions to certain under-determined
systems of linear equations. Comparing to Equation 1.1, the more general £,
minimization problem solves the following convex program:

min ||x||;, subject to b= Az, (2.1)

where A € R¥™ is an under-determined (d <n) full-rank matrix. Assume
xo € R" is an unknown signal, and b is the observation of xy through matrix
A, the compressive sensing theory try to discover whether the solution of
Equation 2.1 can recover signal xg.

Coherence. Compressive sensing theory shows that if &y sparse enough and
the sensing matrix A is incoherent with the basis under which x, is sparse,
@y can be recovered exactly [34] [28]. The sensing matrix A is also called
as “Dictionary” and coherence [35] is used to measure the correlation among
atoms of dictionary. The coherence is defined as:

p=max| < it > | (2.2)

where 1. is the column of matrix A. In words, the coherence is the cosine of
the acute angle between the closest pair of atoms. Informally, a dictionary is
incoherent if the value p is smaller than a threshold.

Minimization solvers. In practical, the equation b = Ax is often relaxed
to take into account the existence of measurement error in the recovering
process: b = Ax + e. Particularly, if the error term e is assumed to be white
noise such that [le||s < €, the ground truth signal &y can be well approximated
by the basis pursuit denoising(BPDN) [36].

min |||, subject to ||b — Azx||; < e. (2.3)

The methods that solver the above minimization problem include but not limit
to: gradient projection [37], homotopy [38], iterative shrinkage-thresholding [39],
proximal gradient [40], and augmented Lagrange multiplier [41].

In our research works, we use the truncated Newton interior-point method
(TNIPM) [37] as our optimization solver. The object function 2.3 is rewritten
as below by using Lagrangian method:

1
" = argmin F(x) = argmin §Hb — Az||5 + M|z, (2.4)

xr

where A is the Lagrangian multiplier. The TNIPM transfers the above object
function into a quadratic program with inequality constraints:

2
1
min§||Aa: — b3 +)\;ui,s.t. —u; <x; <wy, i=1---,n. (2.5)

Then a logarithmic barrier for the constraints —u; < a; < u; can be con-
structed:
O(x,u) = — Z log(u; + x;) — Z log(u; — x;), (2.6)

Over the domain of (x,w), the central path consists of the unique minimizer
(x*,u*) of the convex function

Fi(z,u) = t(|Az = b5+ A) w,) + @ (2, u), (2.7)

i=1

where the parameter ¢ € [0,00). The function can then be minimized by
standard interior-point algorithms.

2.3 Spectral Embedding and Clustering

The goal of clustering is to partition data into different subsets, such that the
data within each subset are similar to each other. The spectral clustering [42]
algorithm show its elegant over other clustering algorithms by its ability to
discover embedding data structure. Spectral clustering algorithm has strong
connection with graph cut, i.e., it uses eigenspace to solve a relaxed form of
the balanced graph partitioning problem [43]. It has advantage on capturing
nonlinear structure of data with using nonlinear kernels, which is difficult for
k-means [44] or other linear clustering algorithms. The spectral clustering
algorithm can be described as following;:

In the above spectral clustering algorithm 2, the affinity matrix W can be
seen as a weighted undirected graph, and this graph encode the local informa-
tion about the data. The weight of graph is calculated from certain similarity
kernels such as Gaussian kernel. When apply £; graph as the input of spec-
tral clustering, we use a math trick: W = (|JW| + |W|)/2 to symmetrize the
matrix W.

2.4 Dense Subgraph

Dense subgraph problem is a fundamental research in learning the structure
of graph. Given a graph G = (V, F), if the edges are weighted, we use w(u) to
represent the weight of edge u. Unweighted graphs are the special case where
all weights are equal to 1. Let S and T be subsets of V. For an undirected
graph, E(S) is the set of induced edges on S : E(S) = (u,v) € Elu,v € S
Then Hg is the induced subgraph (S, E(S)). Similarly, £(S,T) designates the

10

Algorithm 2: SpectralClustering(X, c)

Input : X € R™™ where n is #instances, m is #features, and c is
#clusters.
Output: Cluster assignments of n instances.

1 Construct the affinity matrix W e R™*"™;

2 Compute the diagonal matrix D € R™*"™ where D(i,i) = Y W (4, j)
=1

and D(i,j) = 01if ¢ # j;

Apply the graph Laplacian L = R™™" using L,,, = D — W,
L,,=I1—-D7W or L, =I— D Y2W D2 where I € R™" is
an identity matrix;

4 Extract the first ¢ nontrivial eigenvectors ¥ of L,

v = {wla "/’2&) ¢c}§
Re-normalize the rows of ¥ € R™* into Y;(j) = v;(5)/(>2, ¥:(1)*)V/*;
6 Run k-means with c and Y € R"*¢;

w

9]

set of edges from S to T. Hgr is the induced subgraph (S,T, E(S,T)). S and
T are not necessarily disjoint from each other.

For a subgraph S, the density den(S) is defined as the ratio of the total
weight of edges in E(S) to the number of possible edges among |S| vertices. If
the graph is unweighted, then the numerator is simply the number of actual
edges, and the maximum possible density is 1. if it is weighted, the maximum
density is unbounded. The number of possible edges in a graph of size n is

(Z) =n(N —1)/2. Several edge density definitions are:

_2[E(9)]
den(S) = SISI= 1) (2.8)
2% upes w(u;v)
den,,(S) = |S|(|Sf_ B (2.9)
dengyy(S) = %, (2.10)

where den(S) is for unweighted graph, den,s) is for weighted graph and
dengyy(S) is the average edge density for unweighted graph.

Subgraphs have different forms (or names) by considering its structure
property. In the following we introduce several important forms that related
to our research works.

11

Clique. a clique is a subgraph which all its vertices are connected to each
other. A maximum clique of a graph is a clique having maximum size and its
size is called the graph’s clique number. A maximal clique is a clique that is
not a subset of any other clique.

Densest subgraph. The densest-subgraph problem is to find a set S that
maximizes the average degree. Finding the densest subgraph in a given graph
is a P problem by solving a parametric maximum-flow problem [45]. However,

if we put size restriction on |S|, this problem becomes NP-hard [46].

Quasi-clique. A set of vertices S is an a-quasi-clique if E[S] > « (%),

i.e., if the edge density of the subgraph exceeds a threshold parameter o €
(0,1).

12

Chapter 3

Locality-Preserving and
Structure-Aware £{ Graphs

In this chapter, we propose two types of improved £; graphs. The first one
is a Locality-Preserving £; graph (LOP-£;), which preserves higher local-
connections and at the same time maintains sparsity. The second one is a
structure aware £, graph by encoding the intrinsic manifold structure of data.
The difference with previous one is that it ranks a data point’s nearest neigh-
bors by manifold ranking score which takes the data’s geometry structure into
account. Comparing with original £, graph and its other regularization-based
versions, these two methods require less amount of running time in the scala-
bility test. We evaluate the effectiveness of them by applying it to clustering
application, which confirms that the proposed algorithms outperform related
methods.

3.1 Chapter Introduction

Among many techniques used in the machine learning society, graph-based
mining mainly tries to accommodate the so-called cluster-assumption, which
says that samples on the same structure or manifold tend to have large weight
of connections in-between. But most of the time there is no explicit model
for the underlying manifolds, hence most methods approximate it by the con-
struction of an undirected/directed graph from the observed data samples.
Therefore, correctly constructing a good graph that can best capture essential
data structure is critical for all graph-based methods [47].

Ideally, a good graph should reveal the intrinsic relationship between data
samples on manifold, and also preserve the strong local connectivity inside
neighborhood (called as locality in the following sections). Traditional meth-

13

ods (such as k-nearest neighbors (kNN) [48], e-neighborhood [48] and Gabriel
graph (GG) [49]) mainly rely on pair-wise Euclidean distances to construct the
locally-connected graph. The obtained graphs oftentimes fail to capture local
structures and cannot capture global structures of the manifold [47]. Besides,
these methods either cannot provide datum-adaptive neighborhoods because
of using fixed global parameters [49], or are sensitive to the parameter setting
or local noise especially on high-dimensional datasets [50].

Recently, Cheng et al. [22] proposed to construct an £; graph via sparse
coding [26] by solving an £; optimization problem. £; graph is derived by
encoding each datum as a sparse representation of the other samples (treated
as basis or dictionary pool), and automatically selecting the most informative
neighbors for each datum. The nice properties of £; graph include: 1) sparsity,
which leads to fast subsequent analysis and low requirement for storage [26],
2) datum-adaptive neighborhoods and 3) robustness to data noise as claimed
in [22].

However, the constructing of classic £, graph suffers from the loss in the
locality of the samples to be encoded, which is a fundamental drawback from
sparse coding [51]. Usually, the number of samples is much greater than the
number of manifold dimensions, which means that the basis pool is “overcom-
plete” during the construction of £; graph. Samples may be encoded with
many basis (samples) with weak correlations with the object samples under
such “overcomplete” basis pool. Thus, it results in the inaccuracy of £; graph,
and therefore impedes the quality of the consequent analysis tasks. As an il-
lustration, Fig.3.1(e) shows that under classic £; graph construction, the code
of a sample point p (red cross in Fig.3.1(b)) involves many basis (samples)
that do not belong to the same cluster with p. Such instability may hinder
the robustness of the £, graph based data mining applications, as shown in
Fig.3.1(f). To address this issue, we propose a Locality-Preserving £; graph
(LOP-L;) to learn more discriminative sparse code and preserve the locality
and the similarity of samples in the sparse coding process, and therefore the
robustness of the data analysis result is enhanced. Our contributions are as
follows:

1. LOP-L; preserves locality in an datum-adaptive neighborhood, and
at the same time maintains sparsity from classic £;.

2. The computation of LOP-£; is more scalable than classic £; graph
and the succeeding regularization-based techniques.

3. We confirm the effectiveness of LOP-L; in the application of clustering.

14

0.
¥ N Xy

3 }1)‘ o= * b B . .

25 *%
g * 0.06y

R W 2
¥ ' 0.0:

15 ’,‘("‘1 o
¥y 4 8 &Xx,’I*‘ 0.0:

50 100 Sum]ilgqmle\ 200 250 300 50 100 S‘”“JIEO‘MCX 200 250 300
(a) Cluster labels (b) Original data, point p (¢) Coding on Gaussian
marked as red cross graph
0.
@ %, @ %,

Q@°§ ® %%% - 0.08f w & %%@
S S
1 # 3
% = : e
%o. Wi 0.02 . & °
¥ xg oy wig xx % 99 90 0% 00 @

(d) Clustering results on (e) Coding on £ graph (f) Clustering results on £
Gaussian graph graph

0.

03
0.25

02

0.05

k. 50 100 150 200 250 300
Sample Index.

(g) Coding on LOP-£; (h) Clustering results on
LOP-£,

Figure 3.1: Illustration of LOP-L; effectiveness compared with Gaussian
(similarity) graph and classic £1. The labels of sample in the original dataset
(Fig.3.1(b)) are showed in Fig.3.1(a), and in this example we only focus on
the coding of point p (the 150-th sample, marked as red cross in Fig.3.1(b)).
Coding (similarity) of p on Gaussian graph (Fig.3.1(c)) is built upon Euclidean
space, which leads to manifold non-awareness (Fig.3.1(d)). Classic £; graph
coding (Fig.3.1(e)) results in the loss of locality and therefore instable cluster-
ing result (Fig.3.1(f)). Comparatively, our LOP-£; coding on p (Fig.3.1(g))
shows strongly locality-preserving characteristic and has the best performance
in clustering, as shown in Fig.3.1(h).

3.2 Related Works

L1 graph is an informative graph construction method proposed by Cheng et
al. [22]. It represents the relations of one datum to other data samples by
using the coefficient of its sparse coding. The original £; graph construction
algorithm is a nonparametric method based on the minimization of a £, norm-
based object function.

15

The advantages of £; graph are summarized as follows: (1) robustness to
data noise; (2) sparsity for efficiency; and (3) datum-adaptive neighborhood.
Because of these virtues, £ graph has been applied to many graph based
learning applications [22], for example, subspace learning [22], image classifi-
cation [47] and semi-supervised learning [52] etc. However, classic £; graph
[22] is a purely numerical solution without physical or geometric interpretation
of the data set [53]. Therefore, to better exploit the structure information of
data, many research works have been proposed by adding a new regulariza-
tion term in addition to the original Lasso penalty, for example, the elastic net
regularization [53], OSCAR regularization [53] and graph-Laplacian [3].

Another research focus of £; graph is to reduce its high computational
cost. For each datum, the £; graph need to solve an £; minimization problem
within a large basis pool which is very slow. To reduce the running time, Zhou
et al. [1] proposed a kNN Fused Lasso graph by using the k-nearest neighbors
idea in kernel feature space. With a similar goal, Fang et al. [53] proposed
an algorithm which firstly transfers the data into a reproducing kernel Hilbert
space and then projects to a lower dimensional subspace. By these projections,
the dimension of dataset is reduced and the computational time decreased.

In our research we evaluate the performance of different graph construc-
tions in terms of clustering. Specifically we integrate the constructed graph
into the framework of spectral clustering, due to its popularity and its ability
to discover embedding data structure. Spectral clustering starts with local in-
formation encoded in a weighted graph on input data, and clusters according
to the global eigenvectors of the corresponding (normalized) affinity matrix.
Particularly, to satisfy the input of spectral clustering algorithm, we transform
the adjacency matrix of £, graph into a symmetry matrix manually.

3.3 LOP-£; Graph

The construction of classic £; graph [22] is a global optimization which is short
of local-structure awareness. Moreover, it has a high time complexity, since for
each datum it needs to solve a £i-minimization problem 2.3. For each sample
x;, the global optimization aims at selecting as few basis functions as possible
from a large basis pool, which consists of all the other samples (basis), to
linearly reconstruct z;, meanwhile keeping the reconstruction error as small as
possible. Due to an overcomplete or sufficient basis pool, similar samples can
be encoded as totally different sparse codes, which may bring about the loss
of locality information of the samples to be encoded. To preserve such locality
information, many researches add one or several regularization terms to the
object Eq. 2.3 as in [32] [1] and etc. However, there is a lack of generality for

16

these methods and the regularization-based approaches are, as widely known,
very time consuming.

Here, we propose a much more general and concise approach, called Locality-
Preserving £;-Graph (LOP-L£;), by limiting the basis pool in a local neigh-
borhood basis of the object sample. Our algorithm only uses the k£ nearest
neighborhoods of the object sample as the basis pool, and the definition of the
object function minimization is as follows:

Definition 1. The minimizing object function of LOP-Ly is defined as:

min [|eyll1, st @ = Mo, o; >0, (3.1)

where T* = [x¥, 2%, - -+, 2L] is the k-nearest neighbors of x; in the data set,
with the constraint that all the elements in a; are nonnegative.

The weights of edges in the LOP-L; graph are obtained by seeking a non-
negative low-rank and sparse matrix that represents each data sample as a
linear combination of its constrained neighborhood. The constructed graph
can capture both the global mixture of subspaces structure (by the coding
process) and the locally linear structure (by the sparseness brought by the
constrained neighborhood) of the data, hence is both generative and discrim-
inative. Furthermore, by introducing such a locality preserving constraint to
the sparse coding process, the similarity of sparse codes between similar lo-
cal samples can be preserved. Therefore, the robustness of the subsequent
data analysis task (e.g. spectral clustering) is enhanced. Limiting the size of
basis pool also leads to a benefit of reducing the running time of £; graph
construction.

The details of our proposed LOP-L; is described in Algorithm 3. It is
worth to point out that our proposed LOP-L£; doesn’t prevent users to add
specific regularization terms during the optimization for a special application.

In our implementation, we select one gradient-project-based method called
truncated Newton interior-point method (TNIPM) [37] as the £; minimization
solver, which has O(N'?) empirical complexity where N is the number of
samples. The £;-minimization object function we used is:

argmin || Az — b||* + M|z, (3.2)

where) is the Lasso penalty parameter. We choose A = 1 in our experiments
as many methods also choose.

Analysis of Time Complexity. Here we analyze the time efficiency of
LOP-L; by comparing its running time with classic £; graph. £; graph with

17

Algorithm 3: LOP-£,-Graph
Input : Data samples X = [, Z3a,* -, &N], where x; € R™;
Parameter ¢ for scaling k-nearest neighborhood, where
k =t*m (check Section 3.5.1 for more details).
Output: Adjacency matrix W of L£; graph.

1 Normalize the data sample @; with ||z;||2 = 1;
2 for x; € X do
3 | Find k-nearest neighbors of z;:T'" = [z, - z}];
4 Let B' = [I', I];
5 Solve: I%in lailli, st x; = Blay, and a; > 0;
6 end
7 fori=1: N do
8 for j=1: N do

/* get the sparse code for each z; */
9 if z; €T then

/* pos(x;) is the position of x; in nb’ */

10 W (i, j) = ai(pos(z;))
11 else
12 | W(i,j)=0
13 end
14 end
15 end

TNIPM solver has O(N'?) [54] empirical complexity. Our LOP-£L; algorithm
reduces the size of basis pool from N to k = t*m, so the empirical complexity
will be O(Nk*?). To demonstrate the time reduction, we test the CPU time
of LOP-L; and (classic) £; over a series of random data sets which have 50
attributes and sample size from 10! to 10*. The result is presented in Fig.2,
whidmsllysis cam d1CposedchioBsOVh aomiht hettlee kalRbilitwtility by briefly
documenting its theoretic connections with a few existing methods, which also
lays a solid foundation for LOP-L,’s attractive properties in practical use.
LOP-L; vs Classic kNN-Graph. Compared with our proposed LOP-
L1, the classic kNN graph [48] can be generated very fast, but they achieve
this with a sacrifice on the quality. Classic kNN graph-based methods can
be easily affected by noises, especially those samples which are not in the
same structure while being very close in the misleading high-dimensional Eu-
clidean space. The fundamental difference between classic kNN graph and our
proposed LOP-L; is that the former is highly dependent on the pre-specified

18

CPU time of L1-graph and LOP-L1-graph,log-log scale

——L1-graph
sL| ==~ LOP-L1-graph

time(Secs)

size gi data

Figure 3.2: Scalability comparison between LOP-L£; graph and classic £,
graph.

sample-sample similarity measure used to identify the neighbors, whereas the
later generates an advanced similarity matrix W by solving the optimization
problem of Equation 3.2. In this way, W can potentially encode rich and subtle
relations across instances that may not be easily captured by conventional sim-
ilarity metrics. This is validated by the experimental results in Section 5 that
show the LOP-L; substantially outperforms classic kNN graph in clustering
application.

LOP-L; vs Classic £;-Graph. Our proposed LOP-£; is built upon
classic L1, but has unique theoretical contributions and huge improvement
on performance. As we mentioned earlier, the coding process of L; suffers
from the “overcomplete” basis pool. The optimization of £ is solved by a
straightforward numerical solution: every time the £;-minimization picks up
the basis randomly from a group of “highly similar data samples” [33]. How-
ever, if the sample dimension is high, the similarity evaluation on FKuclidean
space would be highly misleading, which is a well-known problem. Therefore,
together with a large-size basis pool, the basis £, picks up are not guaran-
teed to be in the same manifold with the object sample. In our proposed
LOP-L,, we restrain the coding process from picking up those samples outside
certain neighborhood. In other words, the samples/basis are locally coded,
and LOP-L; brings a dramatic improvement of performance and stability on
the subsequent analysis step. We will further confirm this in the Experiment
Section 5.

LOP-L; vs Regularization-based L£;-Graph. Specifically, the idea of
our LOP-L; is close to the kNN Fused Lasso graph proposed by Zhou et al. [1].
However, our algorithm is different at: (1) there is no regularization term in
our £; minimization; (2) we process the data samples at original data space
instead of at kernel feature space. Generally speaking, our LOP-L, is designed
in a more concise and efficient way compared with the regularization-based
techniques such as [32] [1].

19

LOP-L; vs Recommender Systems and Collaborative Filtering.
Similar to the linear coding used in our proposed LOP-L;, Paterek [55] in-
troduced a recommender system that linearly models each item for rating
prediction, in which the rating of a user u; on an item vy, is calculated as the
aggregation of the ratings of u; on all similar items (given by kNN graph).
Intuitively, in our LOP-L£; we can treat W (i, j) as a rating of sample z; to
sample z;, which is derived by a subset of x;’s nearest neighbors, and predic-
tion of W (i, j) is generated based on a weighted aggregate of their ratings. In
other words, LOP-L£; realizes the concept of collaborative filtering [55] within
a constraint neighborhood that brings locality-preserving property, of which
advantages in recommender systems has been analyzed and confirmed in [56].

3.4 SA-L; Graph

In this section, we propose a Structure Aware (SA) £, graph to improve the
data clustering performance by capturing the manifold structure of input data.
We use a local dictionary for each datum while calculating its sparse coeffi-
cients. SA-L; graph not only preserves the locality of data but also captures
the geometry structure of data. The experimental results show that our new
algorithm has better clustering performance than £; graph.

1 . . . 1 oSO . . .
o
® o o o Wy
09 o © o 1 09f %o%
o ® 904% BB o
08 f o 800@@@ { osf
09 o
orp o 7T P o © 1 o7t —
06 f 0% 8g° °© 1 o06f ,
T ¥e o NS © '
O%@ 0% o 2
05 g o %0o 0% 1 o5f 1
° o8 & P
L o & | L i
0.4 o o ® 0.4
o ®o o °F g %
0af *E O 1 03Ff 1
R
02t © %00 1 o2}
’ o o 0Qg° ° ’
0080 2° 0504
01 f oo c%oogy o 1 o1t
\o \o L % L

0

0

0 0.1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 3.3: Dictionary normalization of two moon dataset. The red and blue
points represent different clusters. Left: before normalization, right: after
normalization. We can see that the neighborhood information is changed after

normalization.
One less attractive aspect of £; graph construction algorithm is the nor-

malization of dictionary. While calculating the sparse coefficient (or £; mini-
mization), it requires all dictionary atoms (or data sample) to have unit length.
Usually, we use L5 normalization. This normalization process project all atoms
to unit hypersphere and eliminates the locality information of data as show
by figure 3.3. As we can see, the neighborhood information is changed after

20

normalization.

Comparing to the strategy of adding regularization terms, we choose to
search a local dictionary for each data sample while calculating the sparse
coefficients. Unlike the method described in [4] which use the k-nearest neigh-
bor as dictionary, we select atoms following the intrinsic manifold structure of
data. The advantage of our selection is that it not only preserves the local-
ity, but also captures the geometry structure of data (figure 3.4). As pointed
out by [3], in many real applications, high-dimensional data always reside on
or close to an intrinsically low dimensional manifold embedded in the high-
dimensional ambient space. This is the fundamental assumption of manifold
learning and also emphasizes the importance of utilizing manifold structure
in learning algorithms. Our proposed algorithm has a user specific parameter
k which leads to the lost of parametric-free characteristic. But our experi-
ment results show that it increases the clustering performance and reduces the
running time.

1
09t
08
07t
06
LRt i]/
oe)
03
02t

01r

0 L L L L L L L L L L L L &
0 0.1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 3.4: £ graph (Left) and SA-£; graph (Right, K = 10) of “two moon”
dataset.
The basic idea of £; graph is to find a sparse coefficient (or coding) for

each data sample. Given dataset X = [x1, @2, -+ ,®,], where x; € R™,i €
[1,--+ ,n] is a vector which represents a data sample. The sparse coefficient
a; € R"1 of x; is calculated by following £; minimization process.

min ||ay]|; subject to x; = ®'cv;, a; > 0. (3.3)

We put constraint a; > 0 here to let coefficients have physical meaning of
similarity. In original £, graph construction algorithm, the dictionary o' =
[T1y++° y@Ti—1, Tigr1,° ,Tp]. Here, we select K atoms P = [£1,° -+ , TK]
from @' by using manifold ranking scores [57] [58]. The algorithm can be
described as Algorithm 4.

We use the closed form solution to calculate the manifold ranking scores

21

for all data samples:

F=(-p89"" (3.4)

where S is the Graph Laplacian matrix and we use Gaussian Kernel (parameter
o is configured as the mean distance) here. Each column of F' is the relative
manifold ranking scores of data sample x;.

Algorithm 4: SA-£, graph
Input : Data samples X = [x1, X2, ,Xy|, where x; € X;
Parameter K;
Output: Adjacency matrix W of sparse graph.

1 Calculate the manifold ranking score matrix F;
2 Normalize the data sample x; with ||z;|]2 = 1;
3 for x; € X do

4 Select top K atoms from F (i), and build $' ;

5 Solve: min |||y, st x; = fiJiai, a; > 0;
a;

6 W(i,:) = ay;

7 end

8 return W;

3.5 Experiments

3.5.1 Experiment Setup

Dataset. To demonstrate the performance of our proposed LOP-L£; graph
and structure aware SA-L£; graph. we evaluate our algorithm on seven UCI
benchmark datasets including three biological data sets (Breast Tissue(BT),
Iris, Soybean), two vision image data set (Vehicle, Image,) and one chem-
istry data set (Wine) and one physical data set (Glass), whose statistics are
summarized in Table 3.1. All these data sets have been popularly used in
spectral clustering analysis research. These diverse combination of data sets
are intended for our comprehensive studies.

Baseline. To investigate the quality of the generated LOP-L; graph, we
compare its performance on spectral clustering applications with £; graph. At
the sample time, we also select a full-scale Gaussian similarity graph (Gaussian
graph), and a kNN Gaussian similarly graph (kNN graph) as our competitors
to understand the quality of LOP-L£; graph better. Since we have ground truth

22

Name #samples | #attributes | #clusters
Iris 150 4 3
BT 106 9 6
Wine 178 13 3
Glass 214 9 6
Soybean 307 35 19
Vehicle 846 18 4
Image 2000 19 7

Table 3.1: Datasets Statistics.

of labels for each data, we evaluate the spectral clustering performance with
Normalized Mutual Information (NMI) and Accuracy (AC).

Parameter Setting. For LOP-£; graph, the algorithm has one parameter
named as basis pool scaling parameter t. It controls how many neighborhoods
should be selected to the basis pool for each sample coding. We set ¢t as a
multiple value of attribute (or features) size w.r.t the data set.

2<t< E, (3.5)
m
where N is the number of samples and m is the sample dimensions. The
reason we scale kNN neighborhood with Eq.3.5 is that we want to make it
more adaptive to different context. In our experiments, we assign ¢t = 2, 3,4
and report the clustering performance results respectively. We will further
analyze our selection of ¢ in Section 3.5.2.

For Gaussian graph, the scaling parameter o is configured as o = 0.1, 0.5, 1.0.
For kNN graph, we assign value of k£ as the size of basis pool of LOP-L; graph
with different t setting respectively. To obtain a fair comparison, we apply the
same spectral clustering to measure their performance.

For SA-L; graph, we select § = 0.99 for manifold ranking, and value K
of kNN graph with Gaussian similarity (parameter o equals to mean value)
equals to 10%,20% and 30% percent of total number of data samples.

3.5.2 Analysis of Basis Pool Scaling

In our algorithm we argue that a constrained neighborhood as basis pool is not
only enough but also provide locality property for the £; graph construction.
On the other hand, one of the most serious problem for kNN-based method
is the over-sparsity where each sample has only a small amount of connected
neighbors, which often results in that the derived graph is bias to some closely-

23

iris bt

] 2 4 6 8 10 12 14 0 5 10 15 20 25

t t
soybean vehicle

mm ol

Figure 3.5: The change of NMI values w.r.t different selection of parameter
t. Red dot in each subplot represents the maximal NMI. These experiments
confirm that a basis neighborhood with certain size (with smaller ¢) provides
better (or at least similar) performance than the overcomplete basis pool (with
the maximal ¢ in each subplot). 24

connected “cliques” and the subsequent analysis is therefore unreliable.

We confirm the effectiveness of our strategy by recording the trend of NMI
value with increasing size of ¢ (up to the maximal ¢ w.r.t each dataset) in
Fig. 3.5 across different dataset. It once again confirms that we don’t need
all remain samples as the basis pool to construct an informative yet stable £;
graph.

3.5.3 Performance of LOP-£; Graph

In this section, we evaluate our proposed LOP-L£; graph algorithm and other
three graph construction algorithms. Table 3.2 and Table 3.3 document the
comparison results (in NMI and AC) of clustering performance.

LOP-L, graph vs L£;-Graph. LOP-L£; graph has better average per-
formance than £; graph. LOP-L£; graph has average NMI value 0.5032 and
AC value 0.5852 while £, graph has average NMI value 0.4611 and AC value
0.5643. For each specific data set, the clustering performance of £; graph
beats average performance of LOP-£; graph on Iris, BT, Image but lose on
others. Moreover, we observe that the highest NMI value between them occurs
at a specific t value of LOP-L£; graph, for example, the highest NMI values of
Image data set is at ¢t = 2,3 of LOP-L; graph.

LOP-L, graph vs kKNN-Graph. The average clustering performance
of kNN graph is the lowest one among Spectral Clustering with Gaussian
similarity graph, £, graph and LOP-£; graph. Comparing to LOP-£; graph,
ENN graph only have better performance (NMI: 0.4739, AC: 0.5346) than
LOP-L; graph (NMI: 0.4328, AC: 0.5189) on BT data set.

LOP-L, graph vs Gaussian Similarity Graph. The spectral cluster-
ing with Gaussian similarity graph (fully connected graph) has lower average
performance than LOP-£; graph in our experiments. However, for specific
data set, the maximum values of NMI and AC not always belong to LOP-L;
graph. For example, the highest NMI value for Iris data set is Gaussian simi-
larity graph with ¢ = 0.1. The reason is that the spectral clustering based on
Gaussian similarity graph is parameter sensitive. To obtain the best result,
the user has to tune the parameter o.

3.5.4 Performance of SA-L; Graph

Comparing to LOP-L; graph, SA-L; graph shows overall better performance
than Gaussian similarity graph and original £; graph as show by Table 3.4.

25

Name Gaussian graph kNN graph Ly graph LOP-L; graph

0=01 0=05|0c=10| t=2 t=3 t=4 t=2 t=3 t=4
Iris 0.8640 0.5895 | 0.7384 | 0.4831 | 0.5059 | 0.3139 | 0.7523 0.5794 | 0.7608 | 0.7696
BT 0.4933 0.4842 | 0.4691 | 0.4731 | 0.5335 | 0.4150 | 0.3660 0.3912 | 0.4536 | 0.4536

Wine 0.4540 0.7042 | 0.6214 | 0.6647 | 0.7471 | 0.7031 | 0.6537 | 0.8358 | 0.8500 | 0.8500
Glass 0.3535 0.2931 | 0.3289 | 0.2584 | 0.3475 | 0.3114 | 0.3416 0.3533 | 0.3575 | 0.2988
Soybean | 0.6294 0.6814 | 0.6170 | 0.6291 | 0.6120 | 0.5835 | 0.7004 | 0.7265 | 0.7180 | 0.7267
Vehicle | 0.1248 0.0976 | 0.0958 | 0.1101 | 0.0779 | 0.0667 | 0.0726 | 0.1352 | 0.1019 | 0.1106
Image 0.4800 0.4678 | 0.4740 | 0.3256 | 0.4434 | 0.4548 | 0.3410 0.3678 | 0.3678 | 0.3582

Table 3.2: NMI comparison of LOP-L; graph and other three graph construc-
tion methods.

Name Gaussian graph kNN graph Ly graph LOP-L; graph
06=01 0=05|0c=10|t=2| t=3 | t=4 t=2 t=3 t=4

Iris 0.9600 0.7267 | 0.8600 | 0.7533 | 0.6670 | 0.5800 | 0.8867 | 0.6400 | 0.9933 | 0.9000

BT 0.5472 0.4906 | 0.5189 | 0.4717 | 0.6038 | 0.5283 | 0.4434 | 0.4623 | 0.5472 | 0.5472

Wine 0.6292 0.8876 | 0.8820 | 0.8483 | 0.9101 | 0.9101 | 0.8652 0.9551 | 0.9607 | 0.9607
Glass 0.4112 0.3972 | 0.4299 | 0.4299 | 0.5000 | 0.4860 | 0.4579 0.4673 | 0.4907 | 0.4299
Soybean | 0.5081 0.5668 | 0.4300 | 0.5049 | 0.4853 | 0.5016 | 0.5244 0.5700 | 0.5668 | 0.6059
Vehicle | 0.3818 0.3582 | 0.3605 | 0.3806 | 0.3475 | 0.3381 | 0.3771 | 0.3936 | 0.3593 | 0.3676
Image 0.5467 0.5124 | 0.5076 | 0.4600 | 0.4838 | 0.4781 | 0.3952 0.3919 | 0.3919 | 0.3881

Table 3.3: Accuracy comparison of LOP-L; graph and other three graph con-
struction methods.

Name Metric L1 kNN Graph SA-L; graph
K:10% | K:20% | K:30% | K:10% | K:20% | K:30%
Iris NMI | 0.3615 | 0.4765 | 0.3883 | 0.4200 | 0.4287 | 0.6103 | 0.5827
AC 10.6900 | 0.5133 | 0.6800 | 0.6933 | 0.7133 | 0.8067 | 0.6800
BT NMI | 0.4055 | 0.4839 | 0.4749 | 0.5178 | 0.5436 | 0.5524 | 0.4702
AC]0.5283 | 0.5189 | 0.5189 | 0.5377 | 0.6604 | 0.6321 | 0.5755
Wine NMI | 0.7717 | 0.8897 | 0.8897 | 0.8897 | 0.9209 | 0.8946 | 0.8043
AC 10.9326 | 0.9719 | 0.9719 | 0.9717 | 0.9775 | 0.9663 | 0.9382
Glass NMI | 0.3794 | 0.3642 | 0.3763 | 0.2572 | 0.3746 | 0.3998 | 0.3715
AC] 0.4486 | 0.5140 | 0.5187 | 0.4439 | 0.4486 | 0.4579 | 0.4533
Soybean NMI | 0.6531 | 0.6509 | 0.7022 | 0.6884 | 0.6858 | 0.7096 | 0.7192
AC] 0.4984 | 0.4625 | 0.5505 | 0.5212 | 0.5179 | 0.5179 | 0.5505
Vehicle NMI | 0.1424 | 0.0802 | 0.0806 | 0.0814 | 0.1173 | 0.1127 | 0.1651
AC]0.3747 | 0.3664 | 0.3676 | 0.3582 | 0.3818 | 0.3818 | 0.3830
Image NMI | 0.5658 | 0.5514 | 0.5454 | 0.5699 | 0.5034 | 0.5877 | 0.5694
AC | 0.6271 | 0.4752 | 0.5286 | 0.5505 | 0.5443 | 0.6467 | 0.6133

Table 3.4: Clustering performance of SA-L; graph construction algorithms.
L1 graph is the baseline.

26

3.6 Chapter Summary

Classic £; graph exhibits good performance in many data mining applications.
However, due to the over-complete basis and the following lack of coding focus,
the locality and the similarity among the samples to be encoded are lost. To
preserve locality, sparsity and good performance in a concise and efficient way,
we propose a Locality-Preserving £; graph (LOP-£;). By limiting the coding
process in a local neighborhood to preserve localization and coding stability,
our proposed LOP-L; alleviates the instability of sparse codes and outperforms
the existing works.

LOP-L; graph use the Euclidean distance to search the dictionary for each
datum. As a result, the manifold structure hidden behind the input data is
ignored. To exploit the geometry structure of data, we propose the structure
aware (SA) £, graph by using manifold ranking technique.

We apply our proposed methods on clustering application and the experi-
ment result confirm the effectiveness of our proposed method.

27

Chapter 4

Greedy Sparse Graph by Using
Ranked Dictionary

In this chapter, we propose a greedy algorithm to speed up the construction of
/1 norm based sparse graph. Moreover, we introduce the concept of ”Ranked
Dictionary” for ¢; minimization. This ranked dictionary not only preserves the
locality but also removes the randomness of neighborhood selection during
the process of graph construction. To demonstrate the effectiveness of our
proposed algorithm, we present our experimental results on several commonly-
used datasets using two different ranking strategies: one is based on Euclidean
distance, and another is based on diffusion distance.

4.1 Chapter Introduction

As mentioned before, £; graph has several disadvantages when apply to general
dataset without the assumption of subspace structure. Motivated by these
limitations, many research works have been proposed in machine learning and
data mining research area. Without lost of generality, we would like to classify
those algorithms into two categories: soft-modification and hard-modification.

1. Soft-modification algorithms. Algorithms in this category usually add
one or more regularization terms to the original £; minimization objec-
tive function in Eq. (1.1). For example, the structure sparsity [1] pre-
serves the local structure information of input data, the auto-grouped
sparse regularization [2] adds the group effect to the final graph, and the
Graph Laplacian regularization [59] [3] lets the closed data samples have
similar sparse coding coefficients (or ;).

2. Hard-modification algorithms. These algorithms define a new dictionary

28

for each data sample during £; minimization. By reducing the solvers’
solution space for each data sample into a local space, the locality of
input data is preserved and the computational time of £; minimization
(Eq. (1.1)) is reduced. For example, the locality preserved (LOP) £,
graph described in Section 3.3 is utilizing k-nearest neighbors as dictio-

naries.
| Input data samples |
| Distance metric (e.g. Euclidean distance) ‘ L1 graph
Gaussian graph kNN-fused Lasso graph ’ GS-L1 graph ‘
kNN graph KGS-L1 graph
e-Ball graph LR-L1 graph
Empty region graph LOP-L1 graph
...(more) Greedy-L1 graph

Figure 4.1: Connection of Greedy L, graph to other graphs. Several of them
are: kNN-fused Lasso graph [1], Group Sparse (GS) L£; graph, Kernelized
Group Sparse (KGS) £, graph [2], Laplacian Regularized (LR) £; graph [3]
and Locality Preserving (LOP) £ graph [4].

The soft-modification algorithms preserve the nonparametric feature and
improve the quality of £, graph by exploiting the intrinsic data information
such as geometry structure, group effects, etc. However, those algorithms still
have high computational cost. This is unpleasant for the large-scale dataset in
this ”Big-data” era. To improve, in this chapter we propose a greedy algorithm
to generate L1 graph. The generated graphs are called Greedy-£; graphs.
Our algorithm employs greedy £; minimization solvers and is based on non-
negative orthogonal matching pursuit (NNOMP). Furthermore, we use ranked
dictionaries with reduced size K which is a user-specified parameter. We
provide the freedom to the user to determine the ranking strategy such as
nearest neighbors, or diffusion ranking [60]. Our algorithm has significant time-
reduction about generating £, graphs. Comparing to the original £; graph
construction method, our algorithm loses the nonparametric characteristics
and is only offering a sub-optimal solution comparing to solutions that use non-
greedy solvers and deliver global optimal solution. However, our experimental
results show that the graph generated by our algorithm has equal (or even
better) performance as the original £; graph by setting K equals to the length

29

of data sample. Our work is a natural extension of existing £, graph research.
A concise summary of the connection between our proposed Greedy-L; graph
and other graphs is illustrated in Figure 4.1.

0 0
0 01 02 03 04 05 06 07 08 09 1 0 0f 02 03 04 05 06 07 08 09 1

Figure 4.2: £, graphs generated by different construction algorithms. From
left to right: 2D toy dataset; £, graph; Greedy-L£, graph with Euclidean metric
(K=15); Greedy-L; graph with Diffusion metric (K=15).

The organization of this chapter is as follows. First, the unstable solutions
caused by different £, solvers will be presented in Section 4.2. Second, we will
introduce our proposed greedy algorithm in Section 4.3. After that, we will give
a review of existing works on how to improve the quality of £; graph. Finally,
we will present our experimental results in Section 4.4 and draw conclusion in
Section 4.5.

30

4.2 Unstable Solutions caused by Different £;
Solvers

To solve the optimization problem (2.3), we need a numerical solver. There
are many popular ones with various minimization methods [61] such as gra-
dient projection, homotopy and proximal gradient. Moreover, all these solvers
have their own special parameter settings. As a result, if we choose different
parameters, the numerical results will be not same. Also, several To illustrate
this phenomenon, we exam the UCI Image dataset with “spams-matlab” soft-
ware [62] and “I1.1s” software [37]. For each solver, we set the parameter A
to different values as: [0.01,0.001,0.0001]. For the experiment, we select the
first sample of Image dataset as source sample, and others as dictionary. To
see the unstable solutions, we list the top five neighbors (Index) and its corre-
sponding weights (Value). The result is show in below table: As we can see,

Solver A Index(Value)

L1s 0.01 | 5(0.2111),14(0.4449),17(0.2718),38(0.0418),575(0.0163)
Spams-matlab | 0.01 5(0.2632),13(0.0044),14(0.3525),17(0.2819)

Lis 0.001 | 5(0.0771),14(0.4540),17(0.3005),38(0.0715),575(0.0908)
Spams-matlab | 0.001 5(0.2851),14(0.3676),17(0.3142),38(0.0043)

LIIs 0.0001 | 14(0.3861),17(0.4051),32(0.0292),36(0.0211),575(0.1413)
Spams-matlab | 0.0001 | 5(0.2621),14(0.4171),17(0.2744),38(0.0346),225(0.0068)

Table 4.1: The effect of unstable solutions caused by using different solvers or
with different parameters.

the majority neighbors between “spams-matlab” and “11_1s” are same except
some minor difference. However, the weights are very different and unstable.
This unstable situation is not only with different parameter A\, but also with
different solvers. This is a disadvantage for using £; graph as similarity graph
for graph oriented machine learning tasks.

4.3 Algorithm

In this section, we introduce the concept of ranked dictionary and two different
ranking strategies: Euclidean distance ranking and Diffusion ranking. These
different ranking methods are proposed for different type of data. For example,
Diffusion ranking is suitable for data with manifold structure,and Euclidean
distance is the popular choice for general data. Obviously, there are many
other distance choices such as cosine distance could be used for ranking, and

31

it’s upon user’s judgment for the right choice. Furthermore, we present a
greedy algorithm at the end of this section.

4.3.1 Ranked Dictionary

We propose a “ranked dictionary” to substitute the original dictionary &' in
equation (1.1). Our claim it that the “ranked dictionary” not only preserves
the locality of data, which is important for clustering applications, but also
solve the “curse of dictionary normalization” dilemma. The idea of “ranked
dictionary” is to rank the neighborhood information following a given distance
metric such as Euclidean distance in vector space. By selecting the top K near-
est neighbors as dictionary, the new dictionary ®% keeps the order of nearest
neighbors and captures the local distribution of data samples. Moreover, ®%-
has smaller size comparing to n — 1 while n equals to the number of data
samples.

There is a subtle difference between k value of popular k-nearest neighbor
(kNN) graph and the K value in our proposed “ranked dictionary” ®%.. Usu-
ally, the users set the value k of KNN graph in the order of log(n) which is
the asymptotic connectivity result [63] that makes the kNN graph to be con-
nected. For K value of ®%., it needs to be larger than d which is the dimension
of vector x;. This requirement is to increase the feasibility of finding successful
sparse linear representation (or signal recover).

The using of truncated version of dictionary ® is proved to success in
building quality £; graph for clustering application [4]. However, it can not
solve the dilemma that there might exist data samples with the same direction
but different length in input data. The dictionary normalization process will
project them onto to the same location at hypersphere. Since they have the
same values, the £; minimization solver will choose one of them randomly.
To avoid this randomness, we need to rank those atoms (or data samples) of
dictionary.

Euclidean Distance Ranking. Using Euclidean metric to rank atoms of
dictionary is quite straightforward. We rank them by distance. The shorter
distance will have a higher rank score. The FEuclidean distance is defined as:

dist(a;, ;) = |2 — x5l = (Y lwa(k) —a; (R)[*)2. (4.1)

k=1
Diffusion Distance Ranking. As pointed out by Yang et al. [3], many real-

world datasets are similar to an intrinsic low dimensional manifold embedded
in high dimensional ambient space, and the geometry structure of manifold can

32

1 T T T T T T T T T 1

09 1 091
8 data samples
0.8 1 081
OOo \
0.7 F o 107¢ °
o
0.6 03 106 +
05 o2 1 051
1

041 s 1 04r
03f + {o03f
021 1 021
0.1 1 011

0 L L L L L L L L L 0 L L L L L L L L L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.3: Ranked dictionary. Left: eight data samples have the same di-
rection but with different length. Red cross is the target data sample for
calculating sparse coefficients. Right: after normalization, those eight data
samples have the same location.

be used to improve the performance of learning algorithms. we now present a
strategy to search dictionaries following the geometry structure of input data.
Based on the diffusion theory [60] [64], we rank the atoms of dictionary through
diffusion matrix. A diffusion process has three stages [64]: (1) initialization;
(2) definition of transition matrix; (3) definition of the diffusion process. In
our setting, the first stage is to build an affinity matrix A from the input
dataset X. We use Gaussian kernel to define the pairwise distance:

_A@J):*Kp(_ﬂftzfﬂﬁ>, (4.2)

202

where A(7, j) is the distance between data sample &; and data sample x;, and
o is a normalization parameter. In our configuration, we use the median of
K nearest neighbors to tune . The second stage is to define the transition
matrix P:

P=D'A, (4.3)

where D is a n x n degree matrix defined as

D(Z,]) :{ Z?:l A(Zaj) ifi=7, (44)

0 otherwise.

Now the diffusion process can be defined as:

W, = PW,P, (4.5)

33

where W = A and ¢ is the number of steps for diffusion steps. Each row of
W, is the diffusion ranking scores. In this paper, we let ¢ equal to K for the
sake of simplicity. Once W, is calculated, the first K data samples with top
scores of each row is selected as dictionary. The algorithmic details can be
documented as follows:

Algorithm 5: DiffusionDictionary
Input : Data samples X = [, ®2,+ -+ , Ty,], where x; € X;
Size of dictionary: K;
Output: Diffusion dictionary index matrix ® .

1 Calculate Gaussian similarity graph A;
2 P=D'A;
/* calculate diffusion process iteratively. */
3fort=1:K do
1 | Wy=PW,_,P
5 end
/* sort each row in descend order. */
6 fori:=1:ndo
7 | sort(W,(i,:))
8 end
/* fetch the index of highest K values in each row of W,
*/
9 fori=1:ndo
10 | ®(i,:) =index(W,(i,1: k))

11 end

4.3.2 Greedy £; Graph

To solving the £; norm minimization problem, we need an efficient solver [61].
For datasets that size are larger than 3, 000 with reasonable dimensions, greedy
solver like Basic pursuit(BP) [36] [24] or Orthogonal Matching Pursuit(OMP) [65]
is more suitable [66]. In this section, We propose a greedy algorithm to build £,
graph. Our proposed algorithm is based on OMP [66] and NNOMP [67] [68].
By using greedy solver, we switch the £; minimization problem (P1) back to
the original £, optimization with(P2)/without(P3) non-negative constraints

34

as:
(P2) min |la|o subject to x; = ®'a;, ay > 0. (4.6)
a;

(P3) min |[a;lo subject to x; = Py (4.7)

The main difference between our algorithm and the original OMP and
NNOMP is that the atoms of dictionary are ranked. We force the solver to
choose and assign weights to atoms that are closer to source data sample
before normalization. To clarify our idea, we present the improved version of
NNOMP solver in Algorithm (6). For OMP solver, the idea and process are
same.

4.3.3 Connection to Subspace Clustering

L, graph is almost the same as the similarity graph of sparse subspace cluster-
ing (SSC) algorithm [25]. However, they have different assumptions about the
data. The £, graph is defined for general data and doesn’t have any specific as-
sumption about data like k-nearest neighbor graph, while the similarity graph
of SSC assumes the data is lied in a union of low-dimensional subspaces [25].

The success of £, graph is first applied to human face images cluster-
ing [26] [52]. Those face images data has two sufficient conditions for the
success of using £, graph for spectral clustering: (1) the dimension of data
vector is high. (2) different human face images stay in different subspaces.
However, for general data, these two conditions are not always exist. By the
experiment results from research work [4], the Ng, Jordan, Weiss and et al.
(NJW) spectral clustering algorithm [69] with Gaussian similarity graph has
better performance than with £; graph on several general datasets. So here,
we argue that the power of £, graph follows the assumption of sparse subspace
clustering.

4.3.4 Connection to Locally Linear Embedding

The idea of “ranked dictionary” has a connection to Locally Linear Embed-
ding(LLE) [70]. LLE solves the following minimization problem:

e(w) = Z 1x; — Zwijij. (4.8)

The cost function e(w) is the add up of the squared distance between all data
samples (x;) and their reconstructions » ; Wi;jX;j. There are two constraints

35

Algorithm 6: GreedyL,Graph.

N o A Wy =

0]

10

11
12

13
14
15
16
17
18
19

Input : Data sample x;

Ranked dictionary ®g;
Residual threshold 0.,eshoid

Output: Sparse coding a of .

fori=1:|x|; do
if 1 == 0 then
Temporary solution: o' = 0;
Temporary residual: 7’ = x — P a;
Temporary solution support: S = Support{a’} = 0;
else
for j=1:kdo
/* ¢; is the j-th atom of P */
€(j) = ming,>o [|pj05 — 7715 = 7715 — max{e; ", 0}%.
end
Find jy such that Vj € S €(jo) < €(j), if there are multiple jy
atoms, choose the one with smallest index value.;
Update support: 8" = 81U {jo};
Update solution: o’ = min, |[®xa — x| subject to
Support{a’} = S and a® > 0;
Update residual: ' = x — ® xa?;
if ||7“1||g < ethreshold then
‘ Break;
end
end
end
Return o;

during the minimization process: (1) the x; are selected to be k nearest neigh-
bor of of x;, where k is a parameter set by user; (2) the row of weight matrix
sum to one: Y, wi; = 1.

If we compare the equation 4.8 of LLE with equation 1.1 of £; graph and

“ranked dictionary”, we can find that both of them are finding a linear repre-
sentation relationship between a given data sample and its k nearest neighbors.
However, £, graph with “ranked dictionary” looks for a sparse reconstruction
weights, and prefer to assign non-zero weights for nearest neighbors x; that
stay in the same subspace as the given data sample x;. The second difference
is the unique advantage of £; graph.

36

4.3.5 Spectral Clustering Performance

One major application of £, graph is spectral clustering. Researchers use £,
graph as the similarity graph of spectral clustering algorithm by treating the
sparse coefficients as similarity values. The similarity graph models the cluster
structure of original data with pre-defined similarity metric, and has significant
impact to the performance of spectral clustering algorithm. A good similarity
graph should have high weights for edges within same cluster and low weights
for edges between different clusters. However, there is no explicit measurement
of the quality of similarity graph from theoretical research as point out by [8].
Instead, the clustering performance, like Mutual Information and Accuracy, is
used to tell whether the similarity graph is in high quality or not implicitly.
“Locality” is another guidance to judge the quality of similarity graph [32].
“Locality” stresses that the edges of similarity graph should connect data
points locally as non-local edges will affect the result of graph cut [43] then
the performance of spectral clustering [8]. In this section, we try to explain
how L£; graph with “ranked dictionary” can generate high quality similarity
graphs.

“Ranked dictionary” preserves the locality of data by only selecting k near-
est neighbors as dictionary. For a given source data point, “ranked dictionary”
constrains the possible candidates that it can connect to. There is a difference
between k nearest neighbor of kNN graph and our proposed Greedy £, graph.
We show it in the Figure (4.4).

As we can see, Greedy L, graph selects a larger range than kNN graph
but a much smaller one than original £, graph. It preserves the locality of
data in a “Hard-modification” way as we introduced in the beginning of this
work. And this locality preserving ability has been proved in previous research
work [71].

Another important aspect of Greedy £, graph is that it preserves the local
subspaces through OMP solver. As the theory proof in [66], if coherence
between the residual vectors (set of r* in line 13 of algorithm (6)) and subspaces
satisfies a data dependent condition, the OMP solver preserves the subspaces of
input data. Based on this, we observe another difference with kNN graph: the
Greedy L, graph prefers to create connections between data samples within
same subspace, while the kNN graph selects edges according to the given
distance metric.

37

III ﬂ-—""“~-l\ S 1 \\‘

] 4 ~,

! < + [R \
[‘m [} [] 1
I 2) \ 1
i o PN \ = = \
i 1 { \ o= H

[]
l L L :
i /]
1 f
i L \"s / 1 !
\ [} ’ F ’
\ \" "RKNIN o/ '
]
1 /. ¥
4
’/
\~"---ﬂ“’ Il
J
/
J/
ya
r >
4
d
rd
'd
-~

-~
-
i e e

Figure 4.4: The range difference of “Ranked Dictionary” (RD), “kNN” and
original “L; graph”. The toy dataset include two subspace S1 and S2. The
selection range of nearest neighbors is shown by dash circles.

4.4 Experiments

We present our experimental results in this section. The datasets in our ex-
periments can be divided into small size data and large size data. The reason
for this separation is that calculating the global optimization for £; minimiza-
tion is time-consuming for large size data (number of instances are larger than
3000.) For those large size data, we use an efficient OMP solver from “spams-
matlab” [62]. As a consequence, the generated £; graphs are not from optimal
sparse coding solutions.

The effectiveness of our proposed graph construction methods is evaluated
through NJW spectral clustering algorithm [69]. To satisfy the input of spec-
tral clustering algorithm, we transform the adjacency matrix of £, graph W
into a symmetry matrix W' by W' = (W +W7)/2. All analyses and exper-
iments are carried out by using Matlab on a server with Intel 12-core 3.4GHz

CPU and 64GB RAM.

Solvers. We use three solvers in our experiments. For small size dataset,

38

“l1-1s” is used for creating £, graph, and our proposed NNOMP solver is used
for Greedy £ graph. For large dataset, we use “spams-matlab” software [62],
which is an efficient implementation of sparse optimization by using multi-
thread techniques, to build the £; graph and Greedy £, graph.

Evaluation Metrics. We evaluate the spectral clustering performance with
Normalized Mutual Information (NMI) and Accuracy (ACC). NMI value ranges
from 0 to 1, with higher values meaning better clustering performance. AC is
another metric to evaluate the clustering performance by measuring the frac-
tion of its clustering result that are correct. It’s value also ranges from 0 to 1,
and the higher the better.

4.4.1 Small-sized Data

Datasets. To demonstrate the performance of our proposed algorithm, we
evaluate it on seven UCI benchmark datasets including three biological data
sets (BreastTissue, Iris, Soybean), two vision image data sets (Vehicle, Im-
age), one chemistry data set (Wine), and one physical data set (Glass), whose
statistics are summarized in Table 4.2. All of these data sets have been pop-
ularly used in spectral clustering analysis research. The diverse combinations
of data sets are necessary for our comprehensive studies.

Name #samples | #attributes | #clusters
BreastTissue (BT) 106 9 6
Iris 150 4 3
Wine 178 13 3
Glass 214 9 6
Soybean 307 35 19
Vehicle 846 18 4
Image 2100 19 7

Table 4.2: Statistics of small-sized datasets.

Baselines and Parameters Setting. We compare the spectral clustering
performance with Gaussian similarity graph and original £; graph. For ex-
periments with small size datasets, we use the 11_ls solver [54] for original £,
graph construction algorithms. We set the solver’s parameter A to 0.1. The
threshold Oipreshorq Of Greedy solver 6 is set to le — 5. For Gaussian graph
and Greedy-L; graph, we select three different K values and document their
clustering performance results respectively. The K is set to be the multiple of
data attribute size. The results are documented in Table 4.3 and Table 4.4.

39

Name Ly graph | Gaussian graph Sr:;;ii[ﬁlézzz}ll\l(E]}gfgiﬁ) g:;f;lﬁléi(;z}fw(Dﬁigiﬁ
BT 0.4582 0.4606 0.5473 | 0.4517 | 0.5024 | 0.4197 | 0.4073 | 0.3839
Iris 0.5943 0.7364 0.3950 | 0.4623 | 0.4070 | 0.5106 | 0.4626 | 0.4640
Wine 0.7717 0.8002 0.8043 | 0.9072 | 0.8566 | 0.6925 | 0.4291 | 0.6093
Glass 0.3581 0.2997 0.2569 | 0.3688 | 0.3039 | 0.2991 | 0.3056 | 0.2918
Soybean | 0.7373 0.6958 0.6919 | 0.6833 | 0.6775 | 0.5788 | 0.5493 | 0.5432
Vehicle | 0.1044 0.1870 01512 | 0.2121 | 0.2067 | 0.1438 | 0.1035 | 0.1244
Image 0.4969 0.4652 0.5821 | 0.6673 | 0.6649 | 0.4866 | 0.4483 | 0.3155
| Average [0.5030 | 0.5207 | 0.5170 | 0.5361 | 0.5170 | 0.4473 [0.3865 [0.3903 |

Table 4.3: NMI comparison of graph construction algorithms. M is the number
of attributes.

Name L, graph | Gaussian graph glchff\f[ﬁllé)z;zlll\l(En;{lf;f&) ﬁf;iiglﬂlﬁizglﬁl(Dﬁrﬁﬁ
BT 0.5472 0.5377 0.6698 | 0.4811 | 0.5943 | 0.4528 | 0.4906 | 0.4717
Iris 0.7400 0.8867 0.6933 | 0.7200 | 0.6800 | 0.7200 | 0.6533 | 0.6400
Wine 0.9326 0.9438 0.9719 | 0.9719 | 0.9551 | 0.8989 | 0.7865 | 0.8596
Glass 0.4206 04112 04579 | 0.4533 | 0.4346 | 0.4626 | 0.4813 [0.5187
Soybean | 0.6156 0.5440 05244 | 04853 | 0.5016 | 0.4430 | 0.3746 | 0.4876
Vehicle | 0.3713 0.4515 04539 | 0.4243 | 0.4090 | 0.3664 | 0.3522 | 0.3605
Image 0.5629 0.4595 0.6348 | 0.7181 | 0.7043 | 0.5190 | 0.5524 | 0.3505
| Average | 0.6105 [0.6049 | 0.6227 [0.6288 [0.6141 | 0.5683 | 0.5334 | 0.5362 |

Table 4.4: ACC comparison of different graph construction algorithms. M is
the number of attributes.

Greedy-£; graph (Euclidean) | Greedy-£; graph (Diffusion)
K=1*M | K=2*M | K=3*M | K=1*M | K=2*M | K=3*M

Name L, graph | Gaussian graph

BT 0.0604 0.0457 | 0.0615 0.0705 0.0341 | 0.0442 | 0.0548
Iris 0.0403 0.0217 | 0.0288 0.0311 0.0203 | 0.0237 | 0.0265
Wine 0.0600 0.0413 | 0.0496 0.0552 0.0347 | 0.0409 | 0.0437
Glass 0.0369 0.0242 | 0.0308 0.0349 0.0188 | 0.0204 | 0.0239

Soybean 0.030
Vehicle 0.0135
Tmage 0.0039

0.0286 | 0.0317 0.0346 0.0258 | 0.0299 0.034
0.0104 | 0.0124 0.0135 0.0062 | 0.0074 | 0.0084
0.0034 0.004 0.0044 0.0026 | 0.0029 | 0.0027

UG U Y (VY U U

Table 4.5: Graph sparsity comparison of different graph construction algo-
rithms. M is the number of attributes.

Greedy-L,; Graph vs. Gaussian Graph. Overall, the Greedy-L£; graph us-
ing Euclidean metric has better average spectral clustering performance than
Gaussian graphs. However, we also observer that Guassian graph has overall
better performance on “Iris”, “Soybean” and “Vehicle” datasets.

Greedy-L; Graph vs. L£; Graph. Greedy-£; graph has better clustering
performance than £, graph on average. However, for iris and soybean datasets,
the £1 graph shows the best clustering result: Iris (NMI=0.5943, ACC=0.74);
Soybean (NMI=0.7373, ACC=0.6156). The best result of Greedy-£; graph

40

L1 graph, running time (Secs) Greedy L1 graph, running time (Secs)

150 10 /
50 >
100)

BT Iris Wine Glass Soybean Vehicle mage

g EU [K=1* M) g E LI [K=2* M} EU(K=3*M)

BT ris Wine Glass Soybean Vehicle mage g Diff{K=1° M | e Dif f{ K=2*M) Difflk=3*M)

Figure 4.5: Running time of different £; graph construction algorithms. Top:
original £, graph construction algorithm. Bottom: the construction of £,
graph using greedy solver.

are: Iris (NMI=0.5106, ACC=0.72); Soybean (NMI=0.6919, ACC=0.5244).

Euclidean Distance Ranking vs. Diffusion Ranking. The Euclidean
distance ranking appears to have better clustering performance than that of
diffusion ranking in general. This is rather a surprising result to us. Only for
“Iris” dataset, the result of diffusion ranking is better than that of Euclidean
distance ranking.

Running Time. We report the running time of generating £; graphs using
different construction algorithms. As we can see from Fig. 4.5, the Greedy-L,
graphs have consumed significantly less construction time than that in original
L, graphs.

Graph Sparsity. We check the sparsity of graphs by calculating the edge
density:
Sparsity(G) = 12 : (4.9)
VI (V=1
The results are reported in Table 4.5. We can see that Greedy-£; graphs with
diffusion distance ranking are more sparse than that with Euclidean distance

ranking.

4.4.2 Large-sized Data and Multiple Classes Data

In this section, we present the experiment results of three large datasets. To
keep the integrity of our experiments, two multiple classes data are also ex-
amined.

41

Name #samples | #attributes | #clusters
[SOLET 1560 617 25
YaleB 2414 1024 38
MNIST4K 4000 784 9
COIL100 7200 1024 100
USPS 9298 256 10

Table 4.6: The statistics of three large datasets and two multiple classes
datasets.

Datasets. We select following datasets for our experiments. Three large size
datasets are: first 2k testing images of MNIST (MNIST4K), COIL 100 objects
database (COIL100) and USPS handwritten digit database (USPS). Two mul-
tiple classes datasets are: isolet spoken letter recognition dataset (ISOLET),
extended Yale face database B (YaleB). The statistics of selected datasets can
be described by Table (4.6).

Spectral Clustering Performance. The spectral clustering performance
shows in Table (4.8). As we can see, Gaussian graphs have overall better
performance than different £, graphs. For the performance between original
L graph (with OMP greedy solver) and Greedy £; graphs, the greedy version
is better.

Graph Sparsity. We also check the sparsity of different similarity graphs.
The result in Table (4.9) shows that Greedy £; graphs with diffusion ranking
are more denser than other £; graphs. And the ordinary £, graph (OMP) has
the lowest sparsity.

It is known that the sparsity of graph will affect the performance of graph
cut and then to spectral clustering. And the spectral clustering performance
will drop if the sparsity is lower than a threshold [72]. Since £; graph is a
sparse graph in nature, we want to know the correlation between the spar-
sity and clustering performance. To evaluating this, we choose the “USPS”
dataset, and generating graphs with different sparsity by setting the recon-
struction approximation error bound to different thresholds. They are: [0.1,
0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001]. For the size of
“ranked dictionary”, we choose size to 2M which is 512. The trend of spectral
clustering performance with different sparsity can be show as the left subplot
of Figure (4.6). We can see that when the sparsity value lower than 0.0072
, the spectral clustering performance drop catastrophically. The relationship
between the approximation error and the graph sparsity is presented at the
right side of Figure (4.6). By reading from the curve, we know that the ap-

42

Nue | £4 (OMP) | Gausinn |28 p et e T [t e
ISOLET 0.2571 0.7821 | 0.5501 | 0.4202 NA 0.1903 | 0.2993 | NA
YaleB 0.2349 04219 | 0.2493 [0.2895 NA 0.2003 | 0.4408 | NA
MNIST4K | 0.2503 04426 | 0.2679 | 0.1850 | 0.2438 | 0.0737 | 0.0333 | 0.0575
COIL100 0.3556 0.7726 | 0.7072 | 0.6533 | 0.6283 | 0.4044 | 0.4166 | 0.4788
USPS 0.1585 0.6580 | 0.6608 | 0.6571 | 0.6488 | 0.0360 | 0.0621 | 0.0399
[Average | 0.2513 | 0.5457 [0.4713 [0.4462 [0.5070 | 0.1809 | 0.2504 | 0.1921 |

Table 4.7: NMI results of spectral clustering with different similarity graphs.
M is the number of attributes.

. Greedy-£L; graph (Euclidean) | Greedy-£; graph (Diffusion
NAME | £; (OMP) | Gaussian |-y 15:2861\/1(K:B*M) KA Kg:QIiM(K:B*l\i
ISOLET 0.2038 0.6974 | 0.4205 | 0.3327 NA 0.1705 | 0.2558 | NA
YaleB 0.1533 0.2618 | 0.2067 | 0.2606 NA 01831 | 04321 | NA
MNIST4K | 0.2787 0.5302 | 0.3900 | 0.2755 | 0.3538 | 0.1847 | 0.1685 | 0.1845
COIL100 0.1192 0.5201 | 0.4746 | 0.4368 | 0.4012 | 0.2381 | 0.2326 | 0.2778
USPS 0.2122 0.7018 | 0.6723 | 0.6740 | 0.6950 | 0.1590 | 0.1778 | 0.1663

[Average [0.1934 [0.5423 | 0.4328 [0.3959 [0.4833 [0.1871 [0.2534 | 0.2095 |

Table 4.8: ACC results of spectral clustering with different similarity graphs.
M is the number of attributes.

Name | £, (OMP) | Gaussion o T | Heot | Koy
ISOLET 0.0010 1 0.3304 | 0.2679 NA 0.4288 | 0.2804 NA
YaleB 0.0019 1 0.1968 | 0.1713 NA 0.3797 | 0.1952 NA
MNIST4K 0.0043 1 0.1022 | 0.0954 0.0929 0.1470 | 0.1267 | 0.1076
COIL100 0.0002 1 0.0786 | 0.0620 0.0574 0.1887 | 0.1198 | 0.0929
USPS 0.0003 1 0.0076 | 0.0072 0.0071 0.0246 | 0.0225 | 0.0214

Table 4.9: Graph sparsity results of different similarity graphs. M is the
number of attributes.

’, . Greedy-L£; graph (Euclidean) | Greedy-£; graph (Diffusion)
Name £1 (OMP) | Gaussian gy TR —omy | K=3™M | K=T"M | K=2"M | K=3°M
ISOLET 243.9 1.1 202.5 310.6 NA 263.0 327.7 NA
YaleB 836.1 4.3 758.7 1187.6 NA 1097.9 1197.7 NA
MNIST4K 1435.8 9.8 814.8 1048.5 1341.9 848.9 1158.4 1412.7
COIL100 5541.3 36.1 2379.7 3225.0 5447.8 4108.5 5091.8 7475.3
USPS 2499.5 16.4 93.2 123.1 174.1 221.1 259.5 323.1
Table 4.10: Running time of different similarity graphs. M is the number of
attributes.

proximation error and sparsity has a negative relationship. To maintain the
Greedy L, as dense as possible, we need to set a lower bound of approximation

eIror.

Running time. We also record the running time of building different simi-
larity graphs. From table (4.10), we see that the running time increase while

43

UsPs uUsPs

0.9} =@=ACC |- 3
0.8 1 0.02
0.7+
0.6+
0.5¢
0.4+
0.3+
0.2+
0.1+

S O N DAV X D ax D 0 ! :
FFFFSELEL @ © Ng e ® »
¥ o o0 o o o o O O N N >

Sparsity Approximation error

Figure 4.6: The impact of graph sparsity to spectral clustering performance.
Left: graph sparsity vs. NMI and ACC. Right: £; solver approximation error
vs. graph sparsity.

the data size becomes larger. However, the “USPS” has lesser running time
than “COIL100” even its data size is bigger. The reason is that “USPS” has
smaller number of features than “COIL100” and this cause the £; solver to
need more computation time for finding sparse solutions.

4.5 Chapter Summary

In this chapter, we have designed a greedy algorithm to construct £; graph.
Moreover, we introduced the concept of “ranked dictionary”, whecih not only
preserves the locality but also solve the curse of normalization. Moreover, it
can construct £; graph efficiently for large size data (#instances > 3000.)
Except for the Euclidean metric and diffusion metric that have been discussed
in this paper, the user can choose other ranking methods such as manifold
ranking that could be more appropriate for specific dataset in real applications.
Our greedy algorithm can generate sparse £, graph faster than the original £,
graph construction algorithm, and the resulting graphs have better clustering
performance on average than original £, graph. Nevertheless, our algorithm
could be generalized in a straightforward way by introducing regularization
terms such as elastic net into the current solver, which would indicate the
quality of generated £, graphs could be further improved.

44

Chapter 5

Dense Subgraph based
Multi-source Data Integration

In this chapter, we propose a multi-source data integration framework based
on dense subgraph mining techniques. It is applied to integrate Microarray
experiment data from different sources in computational biology research area.
The goal is to solve the so-called “batch effect” between different experiments.
Ratio-based algorithms are proven to be effective methods for removing batch
effects that exist among microarray expression data from different data sources.
They are outperforming than other methods in the enhancement of cross-batch
prediction, especially for cancer data sets. However, their overall power is
limited by: (1) Not every batch has control sample. The original method uses
all negative samples to calculate subtrahend. (2) Microarray experimental data
may not have clear labels, especially in the prediction application, the labels
of test data set are unknown. In this chapter, we propose an Improved Ratio-
Based (IRB) method to relieve these two constraints for cross-batch prediction
applications. For each batch in a single study, we select one reference sample
based on the idea of aligning probability density functions (pdfs) of each gene
in different batches. Moreover, for data sets without label information, we
transfer the problem of finding reference sample to the dense subgraph problem
in graph theory. Our proposed IRB method is straightforward and efficient,
and can be extended for integrating large volume microarray data sets. The
experiments show that our method is stable and has high performance in
tumor /non-tumor prediction.

45

5.1 Chapter Introduction

In this digital era, we have been obtaining much more biological experiment
data than before. Consequently, biological scientists have collected and built
many genomic knowledge database by taking the advantage of today’s infor-
mation technology. These large database, for example, NIH GEO [73], inSili-
coDb [74], and ArrayExpress [75], not only share many experiments data from
different independent studies, but also provide computing tools for researchers
to analyze data. The approach of integrative analyzing multiple microarray
gene expression datasets is proved to be a robust way for extracting biological
information from genomic datasets [76]. Comparing with ”meta-analysis” [77]
which combines analysis results from many small-sized independent datasets,
integrative analysis shows higher statistical relevance of results from one inte-
grated large size dataset [78]. Nevertheless, combining or merging microarray
expression data from different data sources suffers from the so-called batch
effects [79] which is still a challenging and difficult problem to be solved in
computational biology nowadays.

Batch effects are different from bias and noise. They are systematical un-
wanted variations existing among batches from different sources [79]. Many
research works have been proposed in past decade to learn their math prop-
erties, and to reduce its impacts in microarray data analysis. Lazar et al. [7§]
documented a comprehensive survey about existing batch effect removal meth-
ods. In all those methods, ratio-based methods are proved to have high pre-
diction performance by Luo et al. [80]. Moreover, ratio-based methods have
low computational cost which is demanding for integrating large volume data
sets. However, ratio-based methods require each batch of data to have a group
of reference samples, which could be either control samples or negative (non-
tumor) samples.

GENESHIFT is another batch effect removal method proposed by Lazar et
al. [81]. It is a nonparametric algorithm and assumes that samples in different
batches are from same population, which means they will have same distribu-
tions. By this assumption, GENESHIFT reduces the batch effect by aligning
the pdfs of each gene’s expression values crossing different batches. It has same
expression value model as ratio-based methods. However, It does not have a
clear math operation/definition about how the batch effects are neglected or
removed. In this chapter, we propose an Improved Ratio-based(IRB) method
of batch effect removal by taking the advantages of ratio-besd methods and
GENESHIFT. The main contributions of our works are listed as follows:

e We show that it is better if the pdfs of genes are estimated from negative

(non-tumor) samples instead of all samples for cancer data sets(§ 5.4.3).

e We propose a co-analysis framework (§ 5.4.4) to find reference samples

46

Symbol | Meaning

Xk X: one batch; k: batch id;

Xikj expression value of i,, row and j, column;
)A(ZIE expression value after batch effect removal;
by batch effect of value at (7, 5) in batch k;

€. noise;

P, Q; pdfs of gene ¢ in batch P and Q;
G(V,E) | graph G with vertices V' and edge set F;
S vertices of subgraph;

elS] number of edges induced by S

Table 5.1: Frequent math notations.

for ratio-based algorithms. We define matching score for searching best
reference samples for labeled data samples. We also propose a greedy
algorithm for obtaining the local optimal solution.

e For unlabeled data samples, we transfer the reference samples searching
problem to the dense subgraph problem from graph theory (§ 5.4.4) and
design an searching algorithm based on bipartite graph to solve it.

e We propose an improved ratio-based method (IRB) (§ 5.4.5) by using
one sample in each batch as subtrahend comparing to original method
which use many. We also evaluate the prediction performance over two
real cancer data sets.

In this work, we represent different batch data as X* k € {1,--- K},
where k is the batch ID. Each batch data has m rows and n columns. The
rows represent genes(feature), and the columns represent samples. More-
over, we assume that all batches have been log-transformed and preprocessed
for background correction, normalization and summarization by using either

MAS5 [82], RMA [83], fRMA [84] or other preprocessing tools.

5.2 Related Works

Batch effect removal. Survey [85], [78] give detail comparison and analysis
about existing batch effect removal algorithms. The most popular ones are(not

47

limited to): Batch Mean-Centering(BMC) [86],Gene Standardization [87],Ratio-
based methods [80], Scaling relative to reference dataset [88], Empirical Bayes
method [89], Cross-Platform Normalization(XPN) [90], Distance-Weighted Dis-
crimination [91], singular value decomposition based method [92], surrogate
variable analysis [93], GENESHIFT [81], remove unwanted variation 2-step [94]
and etc. These methods can be separated into two groups: location-scale (LS)
methods and matrix-factorization(MF) methods. LS methods assume a sta-
tistical model for the location (mean) and scale (variance) of the data within
the batches and proceed to adjust the batches in order to agree with these
methods. MF algorithms assume that the variation in the data corresponding
to batch effects is independent to the biological variable of interest and it can
be captured in a small set of factors which can be estimated through some
matrix factorization methods.

Ratio-based methods. Ration-based methods [80] shift the expression
value of each gene based on a set of reference samples in each batch. It is
designed with two versions: Ratio-A and Ratio-G. Ratio-A uses arithmetic
mean value as subtrahend while Ratio-G uses geometric mean value. They
assume that expression value of each gene in reference samples are subjected
to the same amount of batch effect as in the other samples in same batch. Then
the batch effect can be removed by subtracting the mean of those reference
samples. Assuming that there are r reference samples in batch X*, method
Ratio-A and Ratio-G can be described as:

Ratio-A: Arithmetic mean ratio-based method:

1 T
:%fj :xfj—;z:vfl (5.1)
=1

Ratio-G: Geometric mean ratio-based method:

GENESHIFT is a high quality nonparametric method. It first estimates
genewise pdfs for each batch using the Parzen-Rosenblatt density estimation
method [95]. Secondly, it estimates the offset term by finding the best match
between two pdfs. This algorithm processes two batch data at one time. As-
sume P; and Q); are the pdfs of gene 7 in studies of batch X and batch Y. The
algorithm put P; as being fixed, and slides (); step by step across the range
where P; is estimated. In each step, the algorithm computes the inner product
between P, and part of ();, which lays in the range where the densities are

48

estimated as follows:
M(t) =P, *Q; = ZP (5.3)

where d is number of sampling ticks of pdf and Wéi(j) 1s given by:

__— {w@ﬁ, for Q! in window

@@ o, otherwise

with w = 1 a rectangular window defined on the support of P, and Q! is part
of @); found in the pdfs estimation range at step t. The best matching between
P; and Q; is given by maxz (M) and the offset term is obtained by subtracting
from the initial position of Q;(b,es), the best matching position (bmez(ar)) is:

d = bref - bmax(M)

By setting the reference position to 0, the offset term becomes 6 = —by00(a1).-

Dense subgraph Dense subgraph extraction is a classic problem in Graph
theory [96]. The algorithms of solving this problem have been applied to
biological networks research [97] [98] [99]. Here, we want to extract a densest
subgraph from defined bipartite graph. We wish the extracted subgraph has
high quality and concise. To archive this goal, we apply the latest technique
described in [100] to extract the optimal quasi-clique which is a high quality
dense subgraph.

Given a graph G(V, E), find a subset of vertices S* C V such that f,(S*) =
elS] —a('*g‘) < fo(S) for all S C V. The resulted set S* is called optimal quasi-
cliqgue of G. We use the recommend value o« = 1/3 in this chapter.

5.3 Data

We use two real world cancer data sets to validate our proposed algorithms.

Lung cancer dataset The lung cancer dataset consists three data sets hy-
bridized on two different Affymetrix platforms. The first lung cancer data set
(GSE19804) contains 120 samples of tumor and adjacent normal tissue sam-
ples hybridized on Affymetrix HGU133plus2 expression arrays. The second
data set (GSE19188) contains 94 tumor and 62 adjacent normal tissue sam-
ples hybridized on Affymetrix HGU133plus2 expression arrays. The third lung
cancer data set (GSE10072) contains 58 tumor samples and 49 normal tissues

49

samples consists of a mix of independent controls and tumor adjacent tissues
hybridized on Affymetrix HGU133A expression array.

Type Name NT T Platform
GSE19804 60 60 GPL570
GSE19188 62 94 GPL570

Test GSE10072 49 58 GPL96

Train

Table 5.2: Lung cancer dataset. NT: non-tumor, T: lung tumor.

Iconix dataset We use the Iconix dataset (GSE24417) from Microarray
Quality Control Phase II(MAQC-II) microarray gene expression data [80].
The Iconix dataset is a toxicogenomic data set provide by Iconix Bioscience
(Mountain View, CA, USA). It aimed at evaluating hepatic tumor induction by
non-genotoxic chemicals after short-time exposure. The training set consists
of 216 samples treated for 5 days with one of 76 structurally and mechanis-
tically diverse non-genotoxic hepatocarcinogens and non-hepatocarcinogens.
The test set consists of 201 samples treated for 5 days with one of 68 struc-
turally and mechanistically diverse non-genotoxic hepatocarcinogens. Gene
expression data were profiled using the GE Codelink microarray platform.
The separation of the training set and the test set was based on the time when
the microarray data were collected, also the different batches. The detail data
set information is listed as follows.

Type Batch NT T Date
B1 17 24 11/6/01-12/10/01
Train B2 87 17 12/11/01-02/25/02
B3 39 32 3/20/02-7/18/02
B4 91 18 07/22/02-12/4/02
B5 53 39 4/3/03-9/28/04

Test

Table 5.3: Information of the Iconix dataset; NT: non-tumor, T: tumor.

20

5.4 Algorithm

In this section, we are presenting the Improved Ratio-based (IRB) method.
Comparing to the original ratio-based method, we solve the problem of find-
ing reference samples. Instead of finding reference samples in each batch sepa-
rately, IRB selects reference samples by taking all batches into consideration at
the same time. The outline of this section is as follows. Firstly, the expression
value model of microarray data sets are defined. Secondly, we define the refer-
ence samples searching problem formally. Thirdly, we describe the assumption
used in our method. In the last, we introduce a co-analysis framework for find-
ing reference samples in labeled and unlabeled data sets separately.

5.4.1 Expression Value Model

In general, batch effect comes with multiplicative and additive form. After
log-transform, these batch effects are both represented as additive terms. We
assume that the expression value of feature 7 in sample j of batch X* can be
expressed in the following general form:

xfj = as;j +bF 4+ efj (5.4)

where m;j is the actual feature value. b* is the batch effect term and efj repre-
sents noise.

Moreover, we use the same genewise density estimation method as GENESHIFT
algorithm which is Parzen-Rosenblatt density estimation method[95].

5.4.2 Problem Definition

As we mentioned before, we only want to find one reference sample for each
batch. The searching guideline is following the philosophy of GENESHIFT
algorithm: the inner product of each gene’s pdf in different batches are mai-
mized after integration. Before giving the formal definition of our problem, we
first define the matching score of two batches:

Definition 2. Given two batches that have same number m of genes(or fea-
tures), and with pdf P and pdf Q respectively, the matching score of them is
defined as:

m

M(P,Q) =) < P(i),Q(i) > (5.5)

i=1

Now, our problem can be defined formally as:

o1

Problem 1. Given K batches of microarray expression dataset X* : m x
n(k),m genes,n(-) samples,k € {1,--- , K}, with estimated pdfs:

P =[P'(x),P*(x), -, P" ()]

where P* is the vector of pdfs for genes x in batch X*. P* is a m x 1 vector
where each PF i € {1,---,m} represents the pdf of iy, gene. The problem is to
find K offset samples xlgffset within each batch respectively:

1 2 K
Loffset = [moffsetﬂ Lofrsetr " 7woffset7]

such that the total matching score of pdfs after shifting by its offset samples
respectively archives mazximum:

K K
Mtz > Y M(P(@ = Tospeet), P (@ — Tospct)) (5.6)

i=1 j#i,j=1

In the above problem, x’;f fset 18 a specific sample in batch k. If we don’t
limit m’jf fset 10 be a specific sample in the batch and let it be a regular offset
vector, the problem 1 can be seen as a generalized version of GENESHIFT
which takes two batches at the same time and shift pdfs of every gene sep-
arately from one batch to another batch. The reason we put this constrain
here is that the batch effect term b* in equation (5.4) can be neglected by
subtracting a sample, and this sample inherits the batch effect term with its
true signal value. The advantage of applying this constrain is that we obtain
a clear math explanation about how the batch effects are removed.

5.4.3 Assumption

In GENESHIFT, the author assumes that the expression of each gene from two
different experiments(batches) can be represented accurately enough through
the expression of that gene across all population if the number of samples in
two microarray Gene Expression(MAGE) experiments is sufficiently high. By
this assumption, a consequence conclusion is that the pdfs of each gene should
be similar in all experiments. However, as we observed from above cancer data
sets, the average similarity among the non-tumor(negative) samples is higher
than the tumor(positive) samples, as show by Figure 5.1. We then argue
that the similarity pdfs assumption of GENESHIFT holds for cancer data sets
only if the pdfs are estimated from non-tumor samples but not from all. This
argument is not only based on the observation but also based on the fact

52

GSE19188, Correlation Heat Map

(P T BT Y T

Sample #ID
Sample #ID

it

At e - e
140 PR 4 B
e A ;[&;w 05

20 40 60 80 100 120 140

Sample #ID Sample #ID
GSE19804, Probability Density Function GSE19188, Probability Density Function

—All —Al
161 H 1.6
Tumor Tumor
141 -~ -NonTumor} 14} . -~ -NonTumor}|
1.2 1 1.2
1 1 1
08} o] 08l

06f 1 06l

0.4r 1 041

0.2r 1 0.2r

0
14 -4

o}

SE19804,MEAN and STD of sample correlation GSE19188, MEAN and STD of sample correlation

0.8
0.71 1
0.981
0.6 1

Correlation
54
@
Correlation
o o o
g 2 8

o
S}
L

0.1r 4

0.88

non-tumor tumor non-tumor tumor

Samples Samples

Figure 5.1: Left: GSE19804; Right: GSE19188; Top row: correlation (PCC)
heat map, samples are sorted from non-tumor to tumor samples; Middle row:
pdf of a random gene (GeneBank ID:U48705). Bottom row: correlation values
distribution.

that tumors with similar histopathological appearance can follow significantly
different clinical courses [101]. The assumption of IRB now can be described
as following:

Assumption 1. The pdf of a gene have similar distribution in all experiments

23

1if the pdf is estimated from non-tumor samples.

5.4.4 Co-analysis Framework

In this section, we propose a co-analysis framework to find the reference sam-
ples both for labeled and unlabeled data samples. For all ratio-based methods,
we need reference samples to calculate the subtrahend. Original ratio-based
methods use average of all negative samples or median of them. As for our
method, we only use one reference sample for each batch. Comparing to the
original ratio-based methods that find reference sample independently, we take
all batches into consideration at the same time. Our co-analysis framework
can be described as following from labeled data sets to unlabeled data sets.

Labeled data sets. For example, the training data sets have clear labels of
samples. To find the reference samples for them, we need to solve the optimiza-
tion problem (1). However, the properties like convexity or non-convexity of
objective function in problem (1) are uncertain. Because (1)the objection func-
tion cumulates all matching scores of genes that show very different pdfs;(2)the
pdf curve could be either convex or non-convex.

To solve this problem, we propose a greedy algorithm for it. Our algorithm
first select an anchor batch that has the largest number of non-tumor samples
and shift its geometric median to axis origin. Secondly, for rest batches, we
calculate the best offset vector for each of them according to this anchor batch.
In the last step, we search a sample inside each batch that has the smallest
euclidean distance to this offset vector and treat it as the reference sample
that we are looking for. In the first step, we shift the geometric median of
anchor batch to axis origin. The reason is that we want to place the median
of pdfs of all genes around the axis origin as much as possible. However, the
geometric median is not only difficult to compute but also not necessary to be
an experiment sample that inherits batch effect. To solve this dilemma, we
choose the sample that nearest to the geometric median as a substitute. We
call this sample approzimate geometric median(GM) sample: GMppron. and
the definition is as:

G Mappror = arg min Z llz; — yll2 (5.7)

X
ve z;€X\y

where the parameter ¢ controls the width of neighborhoods. Our greedy algo-
rithm now can be described as Algorithm 7.

o4

Algorithm 7: FindingReferenceSampleLabeled

input : Microarray experiments data: X*:m xn, k€ {1,--- , K}
with labels.
output: Reference samples: Tofrset = [Thf oot Tofpoetr* » Topfocts -

1 begin

2 Find anchor batch zemcher:

3 Shift xenchor by G M approx;

4 for batch X* k # anchor do

5 for each gene g;,i € {1,--- ,m} do

6 estimates the pdf across batches: pdfF;
7 calculate the offset term dF;

8

9

end

find the closest sample &%, ., to 6%;
10 end
11 end

Unlabeled data sets. For these data sets, the tumor/non-tumor labels are
unknown but the batch labels are clear. We estimate the non-tumor samples
of a unlabeled batch by using dense subgraph extraction algorithms. We first
build a bipartite similarity graph between the known non-tumor samples and
all unlabeled samples. The pearson correlation coefficient(PCC) metric, rep-
resented as sim(-), is used. After that, we extract a dense subgraph, called
optimal quasi-clique, from the built graph. The nodes of the resulted sub-
graph that belong to the unlabeled side are treated as non-tumor samples.
The algorithm of building the bipartite graph is described by algorithm 8.

The user-specific value 6 will affect the output of our algorithm as the
input is a completed weighted graph. In our experiments, we use the value
that equals to half of the highest similarity value.

We use the GreedyOQC algorithm introduced in [100] to extract the op-
timal quasi-clique. An illustration of the algorithm output is as following:

5.4.5 Improved Ratio-based Method

Once we have reference sample for each batch, it’s straightforward to mod-
ify the original ratio-based method and obtain our proposed IRB method as

following;:

A?j - f] - m(i)offset (58)

. =x
The overall IRB algorithm can be described by algorithm 9.

95

Algorithm 8: BuildBipartiteGraph
input : Non-tumor samples: L, unlabeled samples: R, User specified
threshold 6
output: A unweighted undirected bipartite graph G(V, E'), where
L,RCV.

1 begin

2 Calculate the similarity sim(l,r),where [€ L,r € R;
3 for each pair (I,r) do

4 if sim(l,r) > 0 then

5 | add one edge to E for nodes pair (I,7);

6 end

7 end

8 remove the nodes with zero degree;

9 return G(V, E);

10 end

Non-tumor samples Unlabeled samples Non-tumor samples Unlabeled samples

Figure 5.2: Left: Input bipartite graph; Right: extracted optimal quasi-clique;
Blue nodes: known non-tumor samples; Gray nodes: unlabeled samples.

5.5 Validation

In this section, we demonstrate and validate our proposed co-analysis frame-
work by using the Lung cancer dataset. Results of each step are presented
here to better show the details of our proposed algorithm.

o6

Algorithm 9: IRB

input : labeled data sets: X* k € {1,---, K} with labels;
unlabeled data set: Y

output: data sets with batch effect removed: X! and }7;

begin

FindingReferenceSampleLabeled(X), obtain @, fset;

Shift all X by @ ser, Obtain X;

BuildBipartiteGraph(X,Y") and extractoptimal quasi-clique;

Estimate the offset of Y;

Find reference sample (y),f fset;

Shift Y;

end

® N O ok W N -

GSMEB4673 GSMEB4681 GSMEB4646 GSMEBB4706 GSMEBB4719 GSMEBB4727 GSMEB4649 CSMEB4693 GSM@BB4653

GSM@B4651 GSMEBB4710 GSMEBB4717 GSMEBB4689 GSV@B4683 GSMEB4662 GSMEB4626 GSMEB4628 GSMEBB4658

GSM494628 GSM494650 GSM494656 GSM494627 GSM494616 GSMA94617 GSMA494638 GSM494643

GSM494631 GSM494618 GSM494640 GSM494637 GSMA94629 GSMA9AE39 GSM4AI4651 GSMA94636 GSME@5736

@ GsE19804 GSE19188 @ GSE10072

Figure 5.3: Resulted optimal quasi-clique of Lung cancer dataset.G = (|V| =
35, |E| = 287). The top two rows list the estimated (fake) non-tumor samples
found by GreedyOQC.

For Lung cancer dataset, we have three batches from two different gene
chip platforms. The batch GSE19188 is selected as anchor batch since it has
the largest number of non-tumor samples. The approximate geometric median
sample is GSM475732. The difference of pdf before and after shifting (applying
IRB method) shows as Figure 5.4.

Now we calculate the reference sample for second batch GSE19804 accord-
ing to anchor batch and the changing of pdf is as figure 5.5.

For test data GSE10072, we build the bipartite graph and find the resulted
optimal quasi-clique as figure 5.5. The constructed bipartite graph has 173
nodes and 747 edges. The output optimal quasi-cligue shows as figure 5.5
and it has 35 nodes and 287 edges. Among them, 18 nodes are samples of
GSE10072 and the real labels of them are non-tumor samples. The changes
of pdfs of GSE10072 is as figure 5.6.

To check the quality of batch effect removal, we show the correlation heat
map and clustering dehendragraph here. As we can see, the correlation values

o7

GSE19188,Probability Density Function,Before GSE19188,Probability Density Function, After
16 T T T T T 16 T T T T T T

—All —All

4 cooTumor] 4r cooTumor]
12 NonTumor|| 12| NonTumor||
1 1k b
0.8 0.8 1
0.6 0.6 1
041 0.4} 1
0.2 0.2r 1
0 0

-4 -3 3 -4 -3 B 4

Figure 5.4: Difference of gene U48705 before (left) and after (right) applying
IRB by reference sample GSM475732.

GSE19804,Probability Density Function, Before GSE19804,Probability Density Function, After

1.4 1.4 :
—All —All
r2f coTumor r2f cooTumor |
NonTumor NonTumor
1 1 1 R
081 .] 081) 1
0.6 0.6 - g
041 04t 4
0.2 0.2F b
0 0
7 8 -5 -4 -3 3

Figure 5.5: The pdf difference of gene U48705. pdf before (left) and after
(right) applying IRB.The value offset is -10.4113.

PDF of GSE10072 non-tumor samples PDF of GSE10072, fake non-tumor samples

25 . 25 '
NonTumor(fake)| —All
= = NonTumor(real)
--=Tumor
ol] 2r NonTumor|]
A
15 A 5 1
R
i]
nl il
I |
H)
h '
0.5F 1 v
B \
' A
ot N
8 9 10 " 12 13

Figure 5.6: The pdf of GSE10072 by estimated(fake) non-tumor samples

o8

among different batches are enhanced and more smooth. The correlation heat
map before and after batch effect removal is:

ap before batech removal Co
- - 1

GSE19804 [y

GSE10072 GSE10072

GSE19188

GSE19188

GSE19804

GSE10072 GSE19804 GSE10072

Figure 5.7: Correlation heat map of Lung cancer data. Top: original data.
Bottom: after batch effect removal by IRB.

5.6 Experiments

In this section, we examine the prediction performance of our proposed al-
gorithm comparing to original ratio-based methods and GENESHIFT. We
use Support Vector Machine(SVM) algorithm with penalty C' = 1, which is
the setting in [80] except that we omit feature selection here. Accuracy and
Matthews correlation coefficient(MCC) are used for our measurements.

The prediction performance of Lung Cancer data is summarized by follow-
ing table: As the results show, GENESHIFT has the best prediction accuracy

Table 5.4: Prediction performance of Lung cancer dataset

Classifier Method Accuracy | MCC
SVM(C=1) | ratio-G 0.45 0.7829
SVM(C=1) | ratio-A 0.9629 0.9813
SVM(C=1) | GENESHIFT | 0.9723 0.9803
SVM(C=1) | IRB 0.9623 0.9813

but ratio-A and IRB have the better MCC scores.

Also, We compare the prediction performance of Iconix data set in table 5.6.
The results show that IRB obtain the best accuracy and MCC scores.

By above two experiment results, we can see that IRB method always has
higher prediction performance than others. This means that IRB is a stable
batch effect removal algorithm.

29

Table 5.5: Prediction performance of Iconix dataset

Classifier Method Accuracy | MCC
SVM(C=1) | ratio-G 0.72 0.1

SVM(C=1) | ratio-A 0.71 0.01
SVM(C=1) | GENESHIFT 0.68 0.04
SVM(C=1) | IRB 0.73 | 0.15

5.7 Chapter Summary

Batch effect removal has been a challenging research problem in computational
biology while integrating large volume microarray data sets. In the past, we
neither had a clear mathematical description of this problem, nor had an
unique way to evaluate the performance of batch effect removal. In this work,
we have generalized the idea of GENESHIFT, which is the latest batch effect
removal algorithm and a non-parametric method.

Our contribution is tow-fold. First, we have solved the problem of finding
reference samples for ratio-based methods from labeled data sets to unlabeled
sets. The proposed co-analysis framework aligns the density function of non-
tumor samples of each batch as much as possible. Comparing with the orig-
inal ratio-based method which processes the batch effect less adequately, our
framework takes all batches into consideration at the same time. Moreover,
we applied the latest algorithm for dense subgraph problem from graph theory
to solve the problem of finding reference samples for unlabeled data sets. The
motivation of using the graph algorithm is that the non-tumor samples are
much more similar to each other than tumor samples.

Second, our algorithm has the advantage of lowering the computational
cost of both ratio-based method and GENESHIFT method. Comparing with
several other batch effect removal methods, this property is valuable while inte-
grating large volume of microarray datasets. The GreedyOQC has complexity
O(|V] + |E]) for graph G(V, E).

In summary, IRB solves the reference sample finding problem of the orig-
inal ratio-based method. It inherits the characteristic of GENESHIFT that
has little negative impact on the data distortion (only on samples). As a
non-parametric method, it is stable and has high performance in prediction
applications for cancer data sets. It has low computational cost and can be
easy adapted to large volume data applications.

60

Chapter 6

Mining Robust Local Subgraphs
in Large Graphs

Robustness is a critical measure of the resilience and performance of large
networked systems. Most works study the robustness of graphs as a whole.
In this chapter, we focus on local robustness and pose a novel problem in the
line of subgraph mining: given a large graph, how can we find its most robust
local subgraphs (RLS)? Robust subgraphs can be thought of as the anchors
of the graph that hold together its connectivity and find several applications.

Our problem formulation is related to the recently proposed general frame-
work [6] for the densest subgraph problem, however differs from it substantially
as robustness concerns with the placement of edges, i.e. the subgraph topol-
ogy, as much as the number of edges in a subgraph. We offer the following
contributions: (i) we show that our RLS-PROBLEM is NP-hard and analyze
its properties, (i) we propose two heuristic algorithms based on top-down and
bottom-up search strategies, (7i7) we present simple modifications of our al-
gorithms to handle three variants of the original RLS-PROBLEM. Extensive
experiments on many real-world graphs demonstrate our ability to find sub-
graphs with higher robustness than the densest subgraphs [5, 6] even at lower
densities, suggesting that the existing approaches are not as suitable for the
new robust subgraph mining setting.

6.1 Chapter Introduction

Large complex networked systems, such as transportation and communication
networks, are a major part of our modern world. The performance and func-
tion of such complex networks rely on their structural robustness, which is
their ability to retain connectivity in the face of damage to parts of the net-

61

work [102]. There are many quantitative metrics to measure the robustness
of a network. However, among other desirable properties, it is crucial for a
robustness measure to emphasize the existence of alternative or back-up paths
between nodes more than just the shortest paths.

In this chapter, we adopt one such measure based on the reachability
(phrased as the communicability) of the nodes in the network [103]. We then
introduce a novel problem related to graph robustness: Given a large graph,
which sets of nodes exhibit the strongest communicability among each other?
In other words, how can we identify the most robust subgraphs in a large
graph?

From the practical point of view, robust subgraphs can be considered as
the “anchors” of the graph, around which others are connected. They likely
form the cores of larger communities or constitute the central backbones in
large networks, responsible for most of the connectivity. For example, robust
subgraphs can correspond to strong communities in social and collaboration
networks or robust regions in the power grid. Moreover, robust interaction
patterns in biological networks can help the understanding of healthy and dis-
eased functional classes, and in financial networks the strength and robustness
of the market.

While the robust subgraph mining problem has not been studied before,
similar problems have been addressed in the literature (§6.2). Probably the
most similar to ours is the densest subgraph mining problem, aiming to find
subgraphs with highest average degree [5, 104, 105] or edge density [6, 106].
However, density (whichever way it is defined) is essentially different from
robustness mainly because while the former concerns with the number of edges
in the subgraph, the topology is at least as critical for the latter (§6.3.1).

The main contributions of our work are the following:

e We formulate a new problem of finding the most robust local subgraphs
(RLS) in a given graph. While in the line of subgraph mining problems,
it has not been studied theoretically before (§6.3).

e We show that the RLS-PROBLEM is NP-hard (§6.3.2), and further study
its properties (§6.3.2).

e We propose two fast heuristic algorithms to solve the RLS-PROBLEM for
large graphs. One is a top-down greedy algorithm, which iteratively re-
moves a node that affects the robustness the least. The other algorithm
is a bottom-up solution based on a meta-heuristic called the greedy ran-
domized adaptive search procedure (GRASP) [107] (§6.4).

e We define three practical variants of the RLS-PROBLEM; finding (i) the
most robust global subgraph without any size constraint, (i¢) the top-k
most robust local subgraphs, and (7i7) the most robust local subgraph

62

containing a set of user-given seed nodes (§6.3.2). We show how to mod-
ify our algorithms proposed for the RLS-PROBLEM to solve its variants
(86.4).

o We extensively evaluate our proposed solutions on numerous real-world
graphs. Since our RLS-PROBLEM is a new one, we compare our re-
sults to those of three algorithms (one in [5], two in [6]) that has been
proposed for the densest subgraph problem. Our results show that we
find subgraphs with higher robustness than the densest subgraphs even
at lower densities, demonstrating that the existing algorithms are not
compatible for the new problem setting (§6.5).

6.2 Related Works

Robustness is a critical property of graphs. Thus, it has been studied ex-
tensively in various fields including physics, biology, mathematics, and net-
working. One of the early studies in measuring graph robustness shows that
scale-free graphs are robust to random failures but vulnerable to intentional
attacks, while for random networks the difference between the two strategies
is small [108]. This observation has stimulated studies on the response of
networks to various attack strategies [109-114]. Other works look at how to
design networks that are optimal with respect to some survivability criteria
[115-118].

With respect to local regions, Trajanovski et al. aim to spot critical regions
in a graph the destruction of which would cause the biggest harm to the
network [119]. Similar works aim to identify the critical nodes and links of a
network [120-123]. These works try to spot vulnerability points in the network,
whereas our objective is somewhat orthogonal: identify robust regions. Closest
to ours, Andersen et al. consider a spectral version of the densest subgraph
problem and propose algorithms for identifying small subgraphs with large
spectral radius [124].

While having major distinctions as we illustrated in this work, robust sub-
graphs are related to dense subgraphs, which have been studied extensively.
Finding the largest clique in a graph, well-known to be NP-complete [125], is
also shown to be hard to approximate [126].

A relaxation of the clique problem is the densest subgraph problem. Gold-
berg [105] and Charikar [5] designed exact poly-time and 1-approximate linear-
time solutions to this problem, respectively, where density is defined as the
average degree. This problem is shown to become NP-hard when the size of
the subgraph is restricted [127]. Most recently, Tsourakakis et al. [6] also
proposed fast heuristic solutions, where they define density as edge surplus;

63

the difference between number of edges and « fraction of maximum edges,
for user-specified constant o > 0. Likewise, Pei et al. study detecting quasi-
cliques in multi-graphs [128]. Other definitions include k-cores, k-plexes, and
k-clubs, etc. [129].

Dense subgraph discovery is related to finding clusters in graphs, however
with major distinctions. Most importantly, dense subgraph discovery has to
do with absolute density where there exists a preset threshold for what is suf-
ficiently dense. On the other hand, graph clustering concerns with relative
density measures where density of one region is compared to another. More-
over, not all clustering objectives are based on density and not all types of
dense subgraphs can be found by clustering algorithms [129].

In summary, while similarities among them exist, discovery of critical re-
gions, robust subgraphs, cliques, densest subgraphs, and clusters are substan-
tially distinct graph mining problems, for which different algorithms can be
applied. To the best of our knowledge, our work is the first to consider iden-
tifying robust local subgraphs in large graphs.

6.3 Robust Local Subgraphs

6.3.1 Graph Robustness

Robustness is a critical property of large-scale networks, and thus has been
studied in various fields including physics, mathematics, computer science,
and biology. As a result, there exists a diverse set of robustness measures,
e.g., mean shortest paths, efficiency, pairwise connectivity, etc. [130].

In this work, we adopt a spectral measure of robustness, called natural
connectivity [131], written as

n

_ 1 A
ANG) = log(gge), (6.1)
which can be thought of as the “average eigenvalue” of G, where Ay > A\ >
... > A\, denote a non-increasing ordering of the eigenvalues of its adjacency
matrix A.

Among other desirable properties [110], natural connectivity is interpretable;
it is directly related to the subgraph centralities (SC') in the graph. The
SC(i) of a node i is known as its communicability [103], and is based on the

“weighted” sum of the number of closed walks that it participates in:

64

S(G)=>"8CH)=>>" (Ak!)”' ,

i=1 i=1 k=0

where (A¥);; is the number of closed walks of length k of node i. The k! scaling
ensures that the weighted sum does not diverge, and longer walks count less.
S(G) is also referred as the Estrada index [103], and has been shown to strongly
correlate with the folding degree of proteins [132].

Noting that Y"1 | (A¥); = trace(A*) = 3" | A¥ and using the Taylor series
of the exponential function we can write

k) n o0 n
!

e (AR NE _
5@ -3 BT Y

k=0 i=1 i=1 k=0 =1

Natural connectivity is then the normalized Estrada index and quantifies
the “average communicability” in a graph.

Robustness vs. Density

Graph robustness appears to be related to graph density. Here we show that
although the two properties are related, there exist key distinctions between
them.

Firstly, while density directly uses the number of edges e, such as 2‘6‘(/(‘;)

average degree [5, 104, 105] or % as in edge density [6, 106], robustness
follows an indirect route; it quantifies the count and length of paths and uses
the graph spectrum. Thus, the objectives of robust and dense subgraph mining
problems are distinct.

More notably, density concerns with the number of edges in the graph and
not with the topology. On the other hand, for robustness the placement of
edges (i.e., topology) is as much, if not more important. In fact, graphs with
the same number of nodes and edges but different topologies are indistinguish-
able from the density point of view (Figure 6.1).

To illustrate further, we show in Figure 6.2 the robustness and density of

\ = 0.9564 A = 0.9804 A = 0.9965

Figure 6.1: Example graphs with the same density but different robustness, i.e.
topology.

as in

65

Size =50 subgraphs. Count =100,000

densest
subgraph

12 most robust__»®
subgraph -, .

o

robustness
(=) ©

EN

Qo5 0.1 0.15 0.2 0.25
density

Figure 6.2: Robustness vs. density of 100,000 connected subgraphs on a real email
graph.

example subgraphs, each of size 50, sampled® from a real-world email network
(8§6.5, Table 6.1). We notice that while the two properties are correlated,
subgraphs with the same density do have a range of different robustness values.
Moreover, among all the samples, the densest and the most robust subgraphs
are distinct.

6.3.2 Problem Definition

In their inspiring work [6], Tsourakakis et al. recently defined a general frame-
work for subgraph density functions, which is written as

fa(S) = g(e[S]) — an(]S])
where S C V is a set of nodes, S # (), e[S] is the number of edges in the
subgraph induced by S, a > 0, and g and h are any two strictly increasing
functions.
Under this framework, maximizing the average degree of a subgraph [5,
104, 105] corresponds to g(z) = h(x) = logx and «a = 1 such that
e[S]
f(S) =log —= .
5]
In order to define our problem, we can relate the objective of our setting
to this general framework. Specifically, our objective can be written as
Zlﬂl e

f(S):logT)

which is to maximize the average eigenvalue of a subgraph. As such, the
objectives of the two problems are distinct, but they both relate to a more

IWe create each subgraph using snowball sampling: we pick a random node and progressively add its
neighbors with probability p, and iterate in a depth-first fashion. Connectivity is guaranteed by adding
at least one neighbor of each node. We use varying p € (0,1) that controls the tree-likeness, to obtain
subgraphs with various densities.

66

general framework [6].

In the following, we formally define our robust local subgraph mining prob-
lem, which is to find the highest robustness subgraph of a certain size (hence
the locality) in a given graph, which we call the RLS-PROBLEM.

Problem 1 (RLS-PROBLEM). Given a graph G = (V, E) and an integer s,
find a subgraph with nodes S* C'V of size |S*| = s such that

F(5%) =1og 3" N _logs > £(S), VS C VS| = .

i=1
S* is referred as the most robust s-subgraph.

One can interpret a robust subgraph as containing a set of nodes having
large communicability within the subgraph.

Problem Hardness

In this section we show that the optimal RLS-PROBLEM is NP-Hard. We
write the decision version of our problem as

P1. (robust s-subgraph problem RLS-PROBLEM) is there a subgraph S in
graph G with |S| = s nodes and robustness A(S) > «, for some o > 07
We reduce from the NP-Complete s-clique problem [125].

P2. (s-clique problem CL) is there clique of size s in G?

Proof. 1t is easy to see that P1 is in NP, since given a graph G we can guess
the subgraph with s nodes and compute its robustness in polynomial time.
In the reduction, the conversion of the instances works as follows. An
instance of CL is a graph G = (V, F) and an integer s. We pass G, s, and
a = A(C;) to RLS-PROBLEM, where C, is a clique of size s. We show that a
yes instance of CL maps to a yes instance of RLS-PROBLEM, and vice versa.
First assume C'is a yes instance of CL, i.e., there exists a clique of size s in G.
Clearly the same is also a yes instance of RLS-PROBLEM as A\(C,) > a. Next
assume S is a yes instance of RLS-PROBLEM, thus A(S) > A(C,). The proof
is by contradiction. Assume S is a subgraph with s nodes that is not a clique.
As such, it should have one or more missing edges from Cy. Let us denote
by Wy, = trace(Af,) the number of closed walks of length & in Cs. Deleting
an edge from Cj, W}, will certainly not increase, and in some cases (e.g., for
k = 2) will strictly decrease. As such, any s-subgraph S’ of C; with missing
edges will have A\(S’) < A(Cj), which is a contradiction to our assumption that
S is a yes instance of the RLS-PROBLEM. Thus, S should be an s-clique and
also a yes instance of CL. O

67

Properties of Robust Subgraphs

NP-hardness of the RLS-PROBLEM suggests that it cannot be solved in poly-
nomial time, unless P=NP. As a consequence, one needs to resort to heuristic
algorithms.

Certain characteristics of hard combinatorial problems sometimes guide the
development of approximation algorithms for those problems. For example,
cliques display a key property used in successful algorithms for the maximum
clique problem called heredity, which states that if the property exists in a
graph, it also exists in all its induced subgraphs. Thanks to this property of
cliques, e.g., checking maximality by inclusion is a trivial task and effective
pruning strategies can be employed within a branch-and-bound framework.
In this section, we study two such characteristics; subgraph monotonicity and
semi-heredity for the RLS-PROBLEM, and show that, alas, robust subgraphs
do not exhibit any of these properties.

Semi-heredity: It is easy to identify a-robust graphs containing subsets of
nodes that induce subgraphs with robustness less than «. As such, robust
subgraphs do not display heredity. Here, we study a weaker version of heredity
called semi-heredity or quasi-inheritance.

Definition 1 (Semi-heredity). Given any graph G = (V, E) satisfying a prop-
erty p, if there exists some v € V' such that G—v = G[V\{v}| also has property
p, p is called a semi-hereditary property.

Theorem 1. The graph property of having at least o robustness A\, does not
display semi-heredity. In other words, it does not hold that any a-robust graph
with s > 1 nodes is a strict superset of some a-robust graph with s — 1 nodes.

Proof. The proof is by counter example. In particular, robustness of cliques
is not semi-hereditary. Without loss of generality, let C} be a k-clique. Then,
ACy) =In ¢ (e" 1+ (k —1)1). Any subgraph of C with k — 1 nodes is also a
clique having strictly lower robustness, for k£ > 1, i.e.,

(@ (= 2)2) < (e (k- 1))
ret2 L FEZ2) (k — 1)1 + (k—1)
keF 1 + k:2€— 2k < (k —1)ef + (k* — 22 +1)
keb =t < (k—1)eF +1

where the inequality is sharp only for & = 1. Thus, for a = A\(C}), there exists
no v such that Cj, — v is a-robust. O

68

Subgraph monotonicity: As we defined in §6.3.1, our robustness mea-
sure can be written in terms of subgraph centrality and can be as A(G) =
log(LS(G).

As S(G) is the total number of weighted closed walks, A is strictly mono-
tonic with respect to edge additions and deletions. However, monotonicity is
not directly obvious for node modifications due to the % factor in the definition,
which changes with the graph size.

Definition 2 (Subgraph Monotonicity). An objective function (in our case,
robustness) R is subgraph monotonic if for any subgraph g = (V') E') of G =
(V,E), V' CV and E' C E, R(g) < R(G).

Theorem 2. Robustness X is not subgraph monotonic.

Proof. Assume we start with any graph G with robustness A(G). Next, we
want to find a graph S with as large robustness as A(G) but that contains the
minimum possible number of nodes Vj,;,. Such a smallest subgraph is in fact
a clique, with the largest eigenvalue (Viyim — 1) and the rest of the (Vipin — 1)
eigenvalues equal to —1.2 To obtain the exact value of Vi, we need to solve
the following

MG) = log

(o 4 (Vi — 1))
which, however, is a transcendental equation and is often solved using numer-
ical methods. To obtain a solution quickly, we calculate a linear regression

over (A(G), Viin) samples. We show a sample simulation in Figure 6.3 for Vi,
1 to 100 where the regression equation is

Viin = 1.0295 % M(G) + 3.2826

Irrespective of how one computes Vi, we next construct a new graph
G' = GU S’ in which @ is the original graph with n nodes and S’ is a clique
of size Viyin + 1. Let A = A(G) and X = \(S’), and as such, A < \. Then, we
can write the robustness of G’ as

_ ne* + (Vain + 1)e*

2 in 1 A
MG = In < n 2t (in & De

=)
n+vmin+]- n+vmin+1

which shows that S’, which is a subgraph of G, has strictly larger robust-
ness than the original graph. This construction shows that A is not subgraph
monotonic. O

2Any subgraph g(C) of a k-clique C has strictly lower robustness A. This is true when g(C) also contains
k nodes, due to monotonicity of S(G) to edge removals (§6.3.2). Moreover, any smaller clique has strictly
lower robustness, see proof for semi-heredity.

69

100+ e data
—linear fitting

80F Vinin = 1.0295 x M(G) + 3.2826
R? = 0.9998

201

0 80 100

o 20 40_ 6
AG)
Figure 6.3: Relation between A\(G) and Vi,

As we mentioned for cliques before, problems that exhibit properties such
as (semi-)heredity and monotonicity often enjoy algorithms that explore the
search space in a smart and efficient way. For example, such algorithms employ
some “smart node ordering” strategies to find iteratively improving solutions.
This starts with the first node in the order and sequentially adds the next
node such that the resulting subgraphs all satisfy some desired criteria, like a
minimum density, which enables finding large solutions quickly.

Showing that our robustness objective displays neither characteristic im-
plies that our RLS-PROBLEM is likely harder to solve than the maximum
clique and densest subgraph problems as, unlike robust subgraphs, (quasi-
)cliques are shown to exhibit e.g., the (semi-)heredity property [106].

Problem Variants

Before we conclude this section, we introduce three variants of our RLS-
PROBLEM, that may also be practical in certain real-world scenarios.

Given that robustness A is not subgraph-monotonic, it is natural to consider
the problem of finding the subgraph with the maximum overall robustness in
the graph (without any restriction on its size), which is not necessarily the full
graph. We call this first variant the robust global subgraph problem or the
RGS-PROBLEM.

Problem 2 (RGS-PROBLEM). Given a graph G = (V, E), find a subgraph
S* CV such that .
F(57) = max f(S) .

S* 1s referred as the most robust subgraph.

70

Another variant involves finding the top k£ most robust s-subgraphs in a
graph, which we call the kRLS-PROBLEM.

Problem 3 (kRLS-PROBLEM). Given a graph G = (V, E), and two integers
s and k, find k subgraphs S = St,..., S, each of size |Sf| =5, 1 <i <k
such that

f(ST) = f(S3) = ... = f(Sp) = f(5), VSCV[S]=5s.

The set S is referred as the top-k most robust s-subgraphs.

In the final variant, the goal is to find the most robust s-subgraph that
contains a set of user-given seed nodes.

Problem 4 (SEEDED-RLS-PROBLEM). Given a graph G = (V, E), an integer
s, and a set of seed nodes U, |U| < s, find a subgraph U C S* C V of size

|S*| = s such that
(87 = max f(S)

UCSCV,|S|=s
S* is referred as the most robust seeded s-subgraph.

It is easy to see that when k = 1 and U = (), the kRLS-PROBLEM and
the SEEDED-RLS-PROBLEM respectively reduce to the RLS-PROBLEM, and
thus can easily be shown to be also NP-hard. A formal proof of hardness for
the RGS-PROBLEM, however, is nontrivial and remains an interesting open
problem for future research.

In the next section, where we propose solutions for our original RLS-
PROBLEM, we also show how our algorithms can be adapted to solve these
three variants of the problem.

6.4 Robust Local Subgraph Mining

Given the hardness of our problem, we propose two heuristic solutions. The
first is a top-down greedy approach, called GREEDYRLS, in which we iter-
atively remove nodes to obtain a subgraph of desired size, while the second,
called GRASP-RLS, is a bottom-up approach in which we iteratively add
nodes to build up our subgraphs. Both solutions carefully order the nodes by
their contributions to the robustness.

6.4.1 Greedy Top-down Search Approach

This approach iteratively and greedily removes the nodes one by one from
the given graph, until a subgraph with the desired size s is reached. At each

71

iteration, the node whose removal results in the maximum robustness of the
residual graph among all the nodes is selected for removal.?

The removal of a node involves removing the node itself and the edges
attached to it from the graph, where the residual graph becomes G[V\{i}].
Let i denote a node to be removed. Let us then write the updated robustness

AA as
1 n—1
\ _)\jJrA)\j
Aa = log (ﬁ Zle > . (6.2)
j:

As such, we are interested in identifying the node that maximizes Aa, or
equivalently

max . 6/\1+A)\1 + e>\2+A)\2 .+ e>\n—1+A/\n—1
6)\1 (6A)\1 + e(/\g*)\l)eA/\Q + L + e()\n_lf)q)eA)\n_l)

cr (€M 4 e 4 eyetMY) (6.3)

where ¢;’s denote constant terms and ¢; < 1, Vj > 2.

Updating the Eigen-pairs

When a node is removed from the graph, its spectrum (i.e., the eigen-pairs)
also changes. Recomputing the eigen-values for Equ. (6.3) every time a node
is removed is computationally challenging. Therefore, we employ fast update
schemes based on the first order matrix perturbation theory [133].

Let AA and (A);, Au;) denote the change in A and (), u;) Vj, respec-
tively, where AA is symmetric. Suppose after the adjustment A becomes

A=A+AA
where each eigen-pair ()}, ;) is written as
A=XN+A)N and G =u; + Ay

Lemma 1. Given a perturbation AA to a matriz A, its eigenvalues can be

updated by
A)\j = llj,AAllj. (64)

Proof. We can write

(A + AA)(UJ + AUJ> = ()\] + A)\j)(llj + AUj)

3Robustness of the residual graph can be lower or higher; S(G) decreases due to monotonicity, but
denominator also shrinks to (n — 1).

72

Expanding the above, we get
Allj + AAUj + AAllj + AAAUj
=)\jllj + A)\jllj +)\jAuj + A)\jAllj (65)

By concentrating on first-order approximation, we assume that all high-
order perturbation terms are negligible, including AAAu; and A\;Au;. Fur-
ther, by using the fact that Au; = A\ju; (i.e., canceling these terms) we obtain

AAUj + AAUj = A/\jllj +)\jAllj (66)

Next we multiply both sides by u;’ and by symmetry of A and orthonormal
property of its eigenvectors we get Equ. (6.4), which concludes the proof. [

Since updating eigenvalues involves the eigenvectors, which also change
with node removals, we use the following to update the eigenvectors as well.

Lemma 2. Given a perturbation AA to a matrix A, its eigenvectors can be
updated by
B ui’ AAuy;
Au; = Ty). 6.7
’ 42.()\3‘—)\1“) (6:)
1=1,i#j

Proof. Using the orthogonality property of the eigenvectors, we can write the
change Auj of eigenvector uj as a linear combination of the original eigenvec-
tors:

Ay = Zaijui (6.8)
i=1

where «;;’s are small constants that we aim to determine.
Using Equ. (6.8) in Equ. (6.6) we obtain

AAuy; + A z": a;iu; = A\juj + A i QU4
i=1 i=1
which is equivalent to
AAu; + i Aoy = Ay + A i QU5
=1 =1
Multiplying both sides of the above by uy’, k # j, we get

uk’AAuj -+)\kOékj =)\jOékj

73

Therefore,

u' AAuy;
. Sl 6.9
kg Aj— Mg (6.9)

for k # j. To obtain «a;; we use the following derivation.
ﬁj,ﬁj =1= (U.j + AUJ)/(UJ + AU_j) =1
=1+ QUJ/ALIJ + ”Allj”z =1
After we discard the high-order term, and substitute Au; with Equ. (6.8) we

get 1+2ajj :].:>Oéjj =0.
We note that for a slightly better approximation, one can choose not to

ignore the high-order term which is equal to ||Au;||? = Z o;;. Thus, one can

compute a;; as
n n
1+205jj+204§j:1:>1+206jj+05?j+ Z Oéizjzl
i=1 i=1,i#j

= (1+ay;)? Za =1l=aqj=
1=1,i#7]

All in all, using the o;;’s as given by Equ. (6.9) and «j; = 0, we can see
that Au; in Equ. (6.8) is equal to Equ. (6.7). O

Node Selection for Removal

By using Lemma 1, we can write the affect of perturbing A with the removal
of a node i on the eigenvalues as

A)\j = Uj/AAllj = —2llij Z Uyj (610)

veN (4)
where A(i,v) = A(v,i) = —1, for v € N (i), and 0 elsewhere. That is, the
change in j* eigenvalue after a node i’s removal is twice the sum of eigenscores
of 7’s neighbors times eigenscore of i, where eigenscores denote the correspond-

ing entries in the associated j*" eigenvector. Thus, at each step we choose the
node that maximizes the following.

—2uj1 Y, Uv1 —2Ujpn—1 . Uvyn-1
max c;|e VEN@D 4 e vEN(D) (6.11)
eV

74

We remark that it is infeasible to compute all the n eigenvalues of a graph
with n nodes, for very large n. Thanks to the skewed spectrum of real-world
graphs [134], we can rely on the observation that only the top few eigenvalues
have large magnitudes. This implies that the ¢; terms in Equ. (6.11) become
much smaller for increasing j and can be ignored. Therefore, we use the
top t eigenvalues to approximate the robustness of a graph. In the past,
the skewed property of the spectrum has also been exploited to approximate
triangle counts in large graphs [135]. The outline of our algorithm, called
GREEDYRLS, is given in Algorithm 10.

Complexity Analysis

Algorithm 10 has three main components: (a) computing top ¢ eigenpairs (L1):
O(nt +mt +nt?), (b) computing Equ. (6.11) scores for all nodes (L4): O(mt)
(> ;dit =t ,d; = 2mt), and (c) updating eigenvalues & eigenvectors when
a node 7 is removed (L10-11): O(d;t) & O(nt?), respectively.

Performing (b) for all nodes at every iteration takes O(tmn). Moreover,
performing (c) iteratively for all nodes requires . dit =t . d; = 2mt, i.c.,
O(tm) for eigenvalues and Y " it?, O(t*n?) for eigenvectors. Therefore, the
overall complexity becomes O(max(tmn, t*n?)).

As we no longer would have small perturbations to the adjacency matrix
over many iterations, updating the eigen-pairs at all steps would yield bad
approximations. As such, we recompute the eigen-pairs at every 3,7, TR
steps. Performing recomputes less frequently in early iterations is reasonable,
as early nodes are likely the peripheral ones that do not affect the eigen-
pairs much, for which updates would suffice. When perturbations accumulate
over iterations and especially when we get closer to the solution, it becomes
beneficial to recompute the eigen-pairs more frequently.

In fact, in a greedier version one can drop the eigen-pair updates (L9-
11), so as to perform O(logn) recomputes, and the complexity becomes
O(max(tmlogn, t*nlogn)).

Algorithm Variants

To adapt our GREEDYRLS algorithm for the kRLS-PROBLEM, we can find
one subgraph at a time, remove all its nodes from the graph, and continue until
we find k subgraphs or end up with an empty graph. This way we generate
pairwise disjoint robust subgraphs.

For the SEEDED-RLS-PROBLEM, we can add a condition to never remove
nodes u € U that belong to the seed set.

5

Algorithm 10: GREEDYRLS

W N =

© 00 9 o o

10
11
12
13
14
15

Input : Graph G = (V| E), its adj. matrix A, integer s.
Output: Subset of nodes S* C V', |S*| = s.

Compute top ¢ eigen-pairs (A\;,u;) of A, 1 <j <t;
Sp <V, A(S,) = MG);
for z =n down to s+ 1 do
Select node i out of Vi € S, that maximizes Equ. (6.11) for top ¢
eigen-pairs of G[S,], i.e.
—2ui; > uwa —2uj >, Uvt
f=max ¢ (e VENG e veN())
1€Sy,
where ¢; = eM and ¢ = eMi=2) for 2 <j <t
So—1 = S\{i}, MS.-1) = log L5
Update A; A(:,i) =0 and A(z,:) = 0;
if z=12,%,¢%,... then
‘ Compute top t eigen-pairs (A;,u;) of A, 1< j <t
end
else
Update top t eigenvalues of A by Equ. (6.4);
Update top t eigenvectors of A by Equ. (6.7);
end
end
Return S* < S,_;

GREEDYRLS algorithm is particularly suitable for the RGS-PROBLEM,

where we can iterate for z = n, ..., Vin®, record A(S,) for each subgraph at
each step (L5), and return the subgraph with the maximum robustness among
S.’s.

6.4.2 Greedy Randomized Adaptive Search Procedure

The top-down approach makes a greedy decision at every step to reach a
solution. If the desired subgraphs are small (i.e., for small s), however, it
implies many greedy decisions, especially on large graphs, where the number

(GRASP) Approach

4V}nin denotes the minimum number of nodes a clique C with robustness at least as large as the full
graph’s would contain. Any subgraph of C' has lower robustness (see §6.3.2) and hence would not qualify as

the most robust subgraph.

76

of greedy steps (n — s) would be excessive. Therefore, here we propose a
bottom-up approach that performs local operations to build up solutions from
scratch.

Our local approach is based on a well-established meta-heuristic called
GRASP [107] for solving combinatorial optimization problems. A GRASP,
or greedy randomized adaptive search procedure, is a multi-start or iterative
process, in which each iteration consists of two phases: (i) a construction
phase, in which an initial feasible solution is produced, and (i7) a local search
phase, in which a better solution with higher objective value in the neigh-
borhood of the constructed solution is sought. The best overall solution is
returned as the final result.

The pseudo-code in Algorithm 11 shows the general GRASP for maxi-
mization, where Ty, iterations are done. For maximizing our objective, we
use f : S — R = A, i.e., the robustness function as given in Equ. (6.1). We
next describe the details of our two GRASP phases.

Algorithm 11: GRASP-RLS
Input : Graph G = (V, E), Thax, f(+), g(+), integer s.
Output: Subset of nodes S* CV, |S*| = s

1 f*=—o00, S* = 0;
2 for z=1,2,...,T.« do
3 S <~ GRASP-RLS-CONSTRUCTION(G, ¢(+), s);
4 S’ <~ GRASP-RLS-LOCALSEARCH(G, S, f(-), s);
5 if f(S’) > f* then
6 \ S*« S, f*= f(5)
7 end
8 end
9 Return S*
Construction

In the construction phase, a feasible solution, which we call a seed subgraph,
is iteratively constructed, one node at a time. At each iteration, the choice of
the next node to be added is determined by ordering all candidate nodes C'
(i.e., those that can be added to the solution) in a restricted candidate list,
called RCL, with respect to a greedy function g : C' — R, and randomly
choosing one of the candidates in the list. The size of RCL is determined
by a real parameter § € [0, 1], which controls the amount of greediness and
randomness. § = 1 corresponds to a purely greedy construction, while g = 0
produces a purely random one. Algorithm 12 describes our construction phase.

7

Algorithm 12: GRASP-RLS-CONSTRUCTION
Input : Graph G = (V, E), g(-), integer s
Output: Subset of nodes S C V

1 S+ 0, C«+V;

2 while |S| < s do

3 Evaluate g(v) for all v € C

4 ¢ < maXyec g(v), ¢ ¢ min,eo g(v);

5 Select 5 € [0, 1] using a strategy;

6 RCL <+ {veClglv) >c+pc—0o)};

7 Select a vertex r from RCL at random;
8 S:=SU{r}, C+ N(S)\S;

9 end

10 Return S;

Selecting g(-): We use three different scoring functions for ordering the candi-
date nodes. First we aim to include locally dense nodes in the seed subgraphs,
therefore we use g(v) = Z((Z)), where ¢(v) denotes the number of local triangles
of v, and d(v) is its degree. We approximate the local triangle counts using
the technique described in [135].

Another approach is sorting the candidate nodes by their degree in the
induced neighborhood subgraph of S, i.e., g(v) = dgjcus)(v). This strategy
favors high degree nodes in the first iteration of the construction.

Finally we use g(v) = A),, i.e., the difference in robustness when a candi-

date node is added to the current subgraph. The first iteration then chooses
a node at random.
Selecting 3: Setting § = 1 is purely greedy and would produce the same
seed subgraph in every GRASP iteration. To incorporate randomness, while
staying close to the greedy best-first selection, one can choose a fixed 1 >
B > 0.5, which produces high average solution values in the presence of large
variance in constructed solutions [107]. We also try choosing S uniformly.
Other more complex selection strategies include using an increasingly non-
uniform discrete distribution (where large values are favored), and reactive
GRASP [136] that guides the construction by the solutions found along the
previous iterations (where 8 values that produced better average solutions are
favored).

78

Local Search

A solution generated by GRASP-RLS-CONSTRUCTION is a preliminary one
and may not necessarily have the best robustness. Thus, it is almost always
beneficial to apply a local improvement procedure to each constructed solution.
A local search algorithm works in an iterative fashion by successively replacing
the current solution with a better one in the neighborhood of the current
solution. It terminates when no better solution can be found. We give the
pseudo-code of our local search phase in Algorithm 13.

As the RLS-PROBLEM asks for a subgraph of size s, the local search takes
as input an s-subgraph generated by construction and searches for a better
solution around it by “swapping” nodes in and out. Ultimately it finds a locally
optimal subgraph of size upper bounded by s + 1. As an answer, it returns
the best s-subgraph with the highest robustness found over the iterations.® As
such, GRASP-RLS-LOCALSEARCH is an adaptation of a general local search
procedure to yield subgraphs of desired size, as in our setting.
Convergence: The local search algorithm is guaranteed to terminate, as the
objective function (i.e., subgraph robustness) improves with every iteration

and the robustness values are upper-bounded from above, by the robustness
of the n-clique, i.e., A(S) < A(C,), for all |S| < n.

Complexity analysis

The size of subgraphs |S| obtained during local search is O(s). Computing
their top ¢ eigen-pairs takes O(s*t + st?), where we use ¢([S]) = O(s?) as
robust subgraphs are often dense. To find the best improving node (L.12), all
nodes in the neighborhood N (S)\S are evaluated, with worst-case size O(n).
As such, each expansion costs O(ns?*t+nst?). With deletions incorporated (L3-
4), the number of expansions can be arbitrarily large [137], however assuming
O(s) expansions are done, overall complexity becomes O(ns*t + ns?t?). If all
t = |S| eigen-pairs are computed, the complexity is quadruple in s and linear
in n, which is feasible for small s. Otherwise, we exploit eigen-pair updates as
in GREEDYRLS to reduce computation.

Algorithm Variants

Adapting GRASP-RLS for the kRLS-PROBLEM can be easily done by re-
turning the best k& (out of Ty.y) distinct subgraphs computed during the
GRASP iterations in Algorithm 11. These subgraphs are likely to overlap,
although one can incorporate constraints as to the extent of overlap.

5Note that the locally optimal solution size may be different from s.

79

Algorithm 13: GRASP-RLS-LOCALSEARCH
Input : Graph G = (V, E), S, integer s.
Output: Subset of nodes S" C V| |S'| = s.

1 more < TRUE, §' «+ S;

2 while more do

3 if there exists v € S such that \(S\{v}) > A\(S) then
4 S = S\{v*} where v* := max,en(s)s A(S\{v});

5 if |S| = s then 5’ <+ S;

6 end

7 else more < FALSE ;

8 add + TRUE;

9 while add and |S| < s do

10 if there is v € N(S)\S s.t. A(SU {v}) > A(S) then
11 S = SU{v*}, v* i= maxen(s)s A(S U {v});
12 more < TRUE;

13 if |S| = s then 5’ « S;

14 end

15 else

16 ‘ add < FALSE;

17 end

18 end

19 end

20 Return S’

For the SEEDED-RLS-PROBLEM, we can initialize set S with the seed
nodes U in construction, while, during the local search phase, we never allow
a node u € U to leave S.

Finally, for the RGS-PROBLEM, we can waive the size constraint in the
expansion step of local search.

6.5 Evaluations

We evaluate our proposed methods extensively on many real-world graphs, as
shown in Table 6.1. We select our graphs from various domains, including
biological, email, Internet AS backbone, P2P, collaboration, and Web.

Our work is in the general lines of subgraph mining, with a new objective
based on robustness. The closest to our setting is the densest subgraph mining.
Therefore, we compare our results to dense subgraphs found by Charikar’s

80

algorithm [5] (which we refer as Charikar), as well as by Tsourakakis et al.’s
two algorithms [6] (which we refer as Greedy and LS for local search). We
remark that the objectives used in those works are distinct; average degree and
edge-surplus, respectively, and also different from ours. As such, we compare
the robust and dense subgraphs based on three main criteria: (a) robustness A
as in Equ (6.1), (b) triangle density t[S]/(lgl), and (c) edge density e[S]/(‘gl).

Table 6.2 shows results on several of our datasets. Note that the three
algorithms we compare to aim to find the densest subgraph in a given graph,
without a size restriction. Thus, each one obtains a subgraph of a different size.
To make the robust subgraphs (RS) comparable to densest subgraphs (DS)
found by each algorithm, we find subgraphs with the same size as Charikar,
Greedy, and LS, respectively noted as s¢yp, sar, and sps. We report our results
based on GREEDYRLS and GRASP-RLS.®

We notice that densest subgraphs found by Greedy and LS are often sub-
stantially smaller than those found by Charikar, and also have higher edge
density, which was also the conclusion of [6]. On the other hand, robust sub-
graphs have higher robustness than densest subgraphs, even at lower densities.
This shows that high density does not always imply high robustness, and vice
versa, illustrating the differences in the two problem settings. It signifies the
emphasis of robust subgraph mining on the subgraph topology, rather than
the total edge count. We also note that GRASP-RLS consistently outper-
forms GREEDYRLS, suggesting bottom-up is a superior strategy to top-down
search.

Figure 6.4 shows the relative difference in robustness of GRASP-RLS sub-
graphs over those by Charikar, Greedy, and LS on all of our graphs. We achieve
a wide range of improvements depending on the graph, while the difference is
always positive.

We remark that the above comparisons are made for subgraphs at sizes
where best results are obtained for each of the three densest subgraph algo-
rithms. Our algorithms, on the other hand, accept a subgraph size input s.
Thus, we compare the algorithms at varying output sizes next. Charikar and
Greedy are both top-down algorithms, in which the lowest degree node is re-
moved at each step and the best subgraph (best average degree or edge surplus,
respectively) is output among all graphs created along the way. We modify
these so that we pull out the subgraphs when size s is reached during the course
of the algorithms.” Figure 6.5 shows that our GRASP-RLS produces sub-

SGRASP-RLS has various versions depending on choice of g(-) and B (§6.4.2). Our analysis suggests
best results are obtained for g(v) = A\, and a uniform 8 € [0.8, 1), which we report in this section.

"Local search by [6] finds locally optimal subgraphs, which are not guaranteed to grow to a given size
s. Thus, we omit comparison to LS subgraphs at varying sizes. Figure 6.4 shows improvements over LS
subgraphs are already substantially large.

81

Table 6.1: Real-world graphs. ¢: density, A: robustness

Dataset n m 1) A
Jazz 198 2742 0.1406 34.74
Celegans N. 297 2148 0.0489 21.32
Email 1133 5451 0.0085 13.74
Oregon-A 7352 15665 0.0005 42.29
Oregon-B 10860 23409 0.0004 47.54
Oregon-C 13947 30584 0.0003 52.10
P2P-GnutellaA 6301 20777 0.0010 19.62
P2P-GnutellaB 8114 26013 0.0008 19.45
P2P-GnutellaC 8717 31525 0.0008 13.35
P2P-GnutellaD 8846 31839 0.0008 14.46
P2P-GnutellaE 10876 39994 0.0007 7.83
DBLP 317080 1049866 2.09x10~° 103.18

Web-Google 875713 4322051 1.13x107° 99.36

100
20 > : >
3 3 33
60 >4 - *e b-d
3 b4 3 53 b4
40 3 > 33 32 >4 s
50 3 b4 3 3 b4 3
> > > > > > > > >
o LEZ3 3] k3 —_— 2 22 32 3 32
20
10 I .
o L ——
20
10
o L—— % === . % B B ==
< - D - > < ~ = < < = N3 O
BT < o < ST o ¥ g o N
s
(453 =S M Greedy E Charikar

Figure 6.4: Robustness gap (%) of GRASP-RLS over (top to bottom) LS, Greedy,
and Charikar on all graphs.

graphs with higher robustness than the rest of the methods at varying sizes
on two example graphs. This also shows that the densest subgraph mining
approaches are not suitable for our new problem.

Experiments thus far illustrate that we find subgraphs with higher robust-
ness than densest subgraphs. These are relative results. To show that the
subgraphs we find are in fact robust, we next quantify the magnitude of the
robustness scores we achieve through significance tests.

Given a subgraph that GRASP-RLS finds, we bootstrap B = 1000 new
subgraphs by rewiring its edges at random. We compute a p-value for each

82

=
N

Email: Robustness by varying subgraph size

9 P2P-A: Robustness by varying subgraph size

"..-4 -
-8
o 8 R
12 o a7
1< ‘n,/“' ' v; . & ;.3;
n v - - 2 -, P
-9 PR i g] o) o z
by o7, o
= ; : P
= 'llo, V i ,n’/)
=) L =} S
% 8 II,,y' il _‘8 "‘:f
I~] -8-GRASP-RLS|| 5 S -& -GRASP-RLS
6 . -© -GreedyRLS || R e - & - GreedyRLS
/ - + - Charikar 4 'f"} -+ -Charikar
¢ o Greedy 4 Greedy
4 L L T T 3 L L L
0 20 40 60 80 100 10 20 30 40 50

Subgraph size s

Subgraph size s

Figure 6.5: Subgraph robustness at varying sizes s.

subgraph from the number of random subgraphs created by rewiring with
larger robustness than our method finds divided by B. The p-value essentially
captures the probability that we would be able to obtain a subgraph with
robustness greater than what we find by chance if we were to create a topology
with the same number of nodes and edges at random (note that all such
subgraphs would have the same edge density). Thus a low p-value implies
that, among the same density topologies, the one we find is in fact robust with
high probability.

Figure 6.6 shows that the subgraphs we find on almost all real graphs are
significantly robust at 0.05. For cases with large p-values, it is possible to
obtain higher robustness subgraphs with rewiring. For example, P2P-F is a
graph where all the robust subgraphs (also the dense subgraphs) found contain
very few or no triangles (see Table 6.2). Therefore, rewiring edges that short-
cut longer cycles they contain help improve their robustness. We remark that
large p-values indicate that the found subgraphs are not significantly robust,
but does not imply our algorithms are unable to find robust subgraphs. That
is because the rewired more robust subgraphs do not necessarily exist in the
original graph G, and it is likely that G does not contain any subgraph with
robustness that is statistically significant.

Next we analyze the performance of our GRASP-RLS. Recall that
GRASP-RLS-CONSTRUCTION quickly builds a subgraph which GRASP-
RLS-LOCALSEARCH uses to improve over to obtain a better result. In Figure
6.7 we show the robustness of subgraphs obtained at construction and after
local search on two example graphs for s = 50 and T,,., = 300. We notice
that most of the GRASP-RLS iterations find a high robustness subgraph
right at construction. In most other cases, local search is able to improve
over construction results significantly. In fact, the most robust outcome on
Oregon-A (Figure 6.7 left) is obtained when construction builds a subgraph
with robustness around 6, which local search improves over 20.

83

C

Figure 6.6: p-values of significance tests indicate that w.h.p. subgraphs we find are

&
&

. @}
o‘ﬁ '

&

B Charikar

in fact significantly robust.

GRASP-RLS on Oregon-A, Ty = 300, s =50

v

o7 R X
SR Y
BLS

po
R
Q’»

@ Greedy

10

GRASPTRLS on PQP—A, r‘““-‘ = 30[] $=50

0.05

< -1 5 ’
3] o e e
o . o e, = * 9
2 W
820 MR hd ¢ 8 8 I PR
9 ot 9 M " ?
=) * o]
8 L ‘,‘!’(Q ’
o 15 . .o o] .
4 o -6 R
5 ¢« 7) e
£ A =1 .
® 10 M @ R
) e o 4 .
3 o g :
c N4 c »
7 5 0,/ 9 »
> . 5 2 y4
Qo ¥ Qo .
g |. & ’
.
0 L L L 0
0 10 15 20 0 10

5 2 4 6 8
Robustness at Construction Robustness at Construction

Figure 6.7: X achieved at GRASP-RLS-CONSTRUCTION versus after GRASP-
RLS-LOCALSEARCH.

We next study the performance of GRASP-RLS w.r.t. scalability. Figure
6.8 shows that its running time grows linearly with respect to graph size on
the Oregon graphs.®

Finally, we perform several case studies on the DBLP co-authorship net-
work to analyze our subgraphs qualitatively. Here, we use the seeded variant
of our algorithm. Christos Faloutsos is a prolific researcher with various in-
terests. In Figure (Table) 6.3 (a), we invoke his interest in databases when
we use him and Rakesh Agrawal as seeds, given that Agrawal is an expert in
this field. On the other hand in (b), we invoke his interest in data mining
when we use Jure Leskovec as the second seed, who is a rising star in the
field. Likewise in (c) and (d) we find robust subgraphs around other selected
prominent researchers in data mining and databases. In (d,e) we show how
our subgraphs change with varying size. Specifically, we find a clique that the
seeds Widom and Ullman belong to for s=10. The subgraph of s=15, while
no longer a clique, remains stable with other researchers like Rajeev Motwani

8We have a total of 9 Oregon graphs with various sizes. We report results only on the largest 3 due to
space limit (see Table 6.1).

84

‘ Scalqbility on Oregon graphs

40
-=- 5=40
357)-+- s=30 |
. 5:20 /, o
%\30 -=-35=10 ,,’,
<25 .
£ .
= 20 /4’
m 4’
£ }
£ 15
5 i e
X 10 ;,,- 4
’ oo o
5tk me--detTTTT r :
N R PO P PR Tt b :

0 0.5— 1 115 é 2:5 é 4
Number of edges x 10

Figure 6.8: Scalability of GRASP-RLS by graph size m and subgraph size s (mean

running time avg’ed over 10 independent runs, bars depict 25%-75%).

and Hector Garcia-Molina added to it.

6.6 Chapter Summary

In this chapter, we introduced the RLS-PROBLEM of finding most robust local
subgraphs of a given size in large graphs, as well as its three practical variants.
While our work bears similarity to densest subgraph mining, it differs from
it in its objective; robustness emphasizes subgraph topology more than edge
density. We showed that our problem is NP-hard and that it does not exhibit
semi-heredity or subgraph-monotonicity properties. We designed two heuristic
algorithms based on top-down and bottom-up search strategies, and showed
how we can adapt them to address the problem variants. We found that
our bottom-up strategy provides consistently superior results, scales linearly
with graph size, and finds subgraphs with significant robustness. Experiments
on many real-world graphs further showed that our subgraphs achieve higher
robustness than densest subgraphs even at lower densities, which signifies the
novelty of our problem setting.

85

0000°T 9660 9651°0 | 0000'T 9¥GI'0 €ST0°0 IT'FT 89'8F 96°€S dSVUD-SY
PPI9°0 SgeT'0 012000 | S6S6°0 8000 Lg000 698 99°GC LS'TH AqEEND-GY | I
FSCL'0 6SL47°0 TLTT'O | 8LIF0 091Z°0 99%0°0 | 0601 g9Lv ST'gS || (ST ‘GOt ‘ove) SA |
€€€8°0 TLEF'0 0.L300 | S0 00 90-d€6'9 | 62'T TIF'9 TT'6 dSVUDSY | 5
19990 €65€°0 L9200 | 00 00 90-dE8'9 | 980 Tr¢ 016 AQEEUD-SY |
19990 TLEP'0 90£0°0 | 0°0 00 90-dLL'6 | 980 0F9 188 (v ‘2z ‘98¢) A | =
€765°0 10850 FSSE'0 | GL8T°0 SLLT'0 0L80°0 | 10°8¢ ¥I'08 LV'¥E dSVaDSd | o
L98V°0 TETP'0 G880 | €61T°0 GZOI'0 LS80°0 €L1G 0LVe 187 AQHEED-SY | &
L3680 TIES'0 T6SE'0 | L3830 89LT'0 89800 69, 1008 ¥PFE (2g ‘19 °28) S | Q
L8%6°0 0000°'T 80500 | T298°0 0000°T L0000 16'8 TS'8 VOV dSVUD-SY |
6L1L°0 9262°0 €200 | 90900 96900 10000 L9 96°G F6ET AQEAID-GY | 3
L6350 0000°T 0090°0 | L8220 0000'T 6000°0 | 967 168 scel || (€12l ‘125) sd | =
1 e ife) ST e ife) | e ife) (s D5 “UDs)

[S]¢ Aysuop o8po

[S]v Aysuoep o[duery

[S]Y ssewisnqox

POUIOIN 7 eIR([

‘[9] yoress Teo0] s ‘[9] Apeern) 15 ‘[¢] reqirey))) ‘sydeisqns jsesusp pur jsnqol Jo uostredwoy) :z'Q 9[qe],

86

"SIOTIN' PORIIPUL 9} [IIM PIPOds UoyM WILIoSR STY-JSV YD Mo Aq peuinjar sydeidqns T SNqoY €9 9[qr],
0'6=Y ‘8¢'0=V ‘8'0=¢ L9=Y ‘I=V ‘1=¢ 0'9=Y ‘8L°0=V ‘16'0=¢ 0'¢=Y ‘TIG'0=V ‘8L°0=¢ L'9=YX ‘I=V ‘1=¢

{wewyyn @ r ‘woprm 't} (2°p) {remreSsy D D ‘wepy r} (9) {oenoyser] ' ‘sosynoreq "D} (q) {remeiSy Y ‘sosinoreq D} (v)

luemjoppagsley

87

Chapter 7

Sparse Feature Graph

In this chapter, we introduce Sparse Feature Graph with the application in
redundant feature removal for high dimensional data. The redundant fea-
tures existing in high dimensional datasets always affect the performance of
learning and mining algorithms. How to detect and remove them is an impor-
tant research topic in machine learning and data mining research. Based on
the framework of sparse learning based unsupervised feature selection, Sparse
Feature Graph is introduced not only to model the redundancy between two
features, but also to disclose the group redundancy between two groups of
features. With SFG, we can divide the whole features into different groups,
and improve the intrinsic structure of data by removing detected redundant
features. With accurate data structure, quality indicator vectors can be ob-
tained to improve the learning performance of existing unsupervised feature
selection algorithms such as multi-cluster feature selection (MCFS).

7.1 Chapter Introduction

For unsupervised feature selection algorithms, the structure of data is used to
generate indication vectors for selecting informative features. The structure of
data could be local manifold structure [138] [139], global structure [140] [141],
discriminative information [142] [143] and etc. To model the structure of data,
methods like Gaussian similarity graph, or k-nearest neighbor similarity graph
are very popular in machine learning research. All these similarity graphs
are built based on the pairwise distance like Euclidean distance (£ norm) or
Manhattan distance (£, norm) defined between two data samples (vectors). As
we can see, the pairwise distance is crucial to the quality of indication vectors,
and the success of unsupervised feature selection depends on the accuracy of
these indication vectors.

88

When the dimensional size of data becomes high, or say, for high dimen-
sional datasets, we will meet the curse of high dimensionality issue [144]. That
means the differentiating ability of pairwise distance will degraded rapidly
when the dimension of data goes higher, and the nearest neighbor indexing
will give inaccurate results [145] [146]. As a result, the description of data
structure by using similarity graphs will be not precise and even wrong. This
create an embarrassing chicken-and-egg problem [147] for unsupervised feature
selection algorithms: “the success of feature selection depends on the quality of
indication vectors which are related to the structure of data. But the purpose
of feature selection is to giving more accurate data structure.”

Most existing unsupervised feature selection algorithms use all original
features [147] to build the similarity graph. As a result, the obtained data
structure information will not as accurate as the intrinsic one it should be. To
remedy this problem, dimensionality reduction techniques are required. For
example, Principal Component Analysis (PCA) and Random Projection (RP)
are popular methods in machine learning research. However, most of them
will project the data matrix into another (lower dimensional) space with the
constraint to approximate the original pairwise similarities. As a result, we
lose the physical meaning or original features and the meaning of projected
features are unknown.

In this chapter, we proposed a graph-based approach to reduce the data
dimension by removing redundant features. Without lose of generality, we cat-
egorize features into three groups [148]: relevant feature,irrelevant feature and
redundant feature. A feature f; is relevant or irrelevant based on it’s correla-
tion with indication vectors (or target vectors named in other articles) Y =
{yi,i € [1,k]|}. For supervised feature selection algorithms [149] [23] [150],
these indication vectors usually relate to class labels. For unsupervised sce-
nario [151] [152], as we mentioned early, they follow the structure of data.
Redundant features are features that highly correlated to other features, and
have no contribution or trivial contribution to the target learning task. The
formal definition of redundant feature is by [153] based on the Markov blanket
given by [154].

Based on the philosophy of sparse learning based MCFS algorithm, a fea-
ture could be redundant to another single feature, or to a subset of features.
In this work, we propose a graph based approach to identify these two kind of
redundancy at the same time. The first step is to build a Sparse Feature Graph
(SFG) at feature side based on sparse representation concept from subspace
clustering theory [25]. Secondly, we review the quality of sparse representation
of each single feature vector and filtered out those failed ones. In the last, we
defined Local Compressible Subgraphs (LCS) to represent those local feature

89

groups that are very redundant. Moreover, a greedy local search algorithm

is designed to discover all those LCSs. Once we have all LCSs, we pick the

feature which has the highest node in-degree as the representative feature and

treat all other as redundant features. With this approach, we obtain a new

data matrix with reduced size and alleviate the curse of dimensional issues.
To be specific, the contribution of this chapter can be highlighted as:

e We propose sparse feature graph to model the feature redundancy ex-
isting in high dimensional datasets. The sparse feature graph inherits
the philosophy of sparse learning based unsupervised feature selection
framework. The sparse feature graph not only records the redundancy
between two features but also show the redundancy between one feature
and a subset of features.

e We propose local compressible subgraph to represent redundant feature
groups. And also design a local greedy search algorithm to find all those
subgraphs.

e We reduce the dimensionality of input data and alleviate the curse of
dimensional issue through redundant features removal. With a more
accurate data structure, the chicken-and-egg problem for unsupervised
feature selection algorithms are remedied in certain level. One elegant
part of our proposed approach is to reduce the data dimension without
any pairwise distance calculation.

e Abundant experiments and analysis over twelve high dimensional
datasets from three different domains are also presented in this study.
The experiment results show that our method can obtain better data
structure with reduced size of dimensionality, and proof the effectiveness
of our proposed approach.

The rest of this chapter is organized as follows. The first section describe
the math notation used in our work. The Section 2 introduces the background
, motivation and preliminaries of our problem. In Section 3, we define the
problem we are going to solve. In Section 4, we present our proposed sparse
feature graph algorithm and discuss the sparse representation error problem.
We also introduce the local compressible subgraph and related algorithm. The
experiment results are reported in Section 5, and a briefly reviewing of related
works is given in Section 6. Finally, we conclude our work in last Section 7.

90

7.2 Related Works

Remove redundant features is an important step for feature selection algo-
rithms. Prestigious works include [153] which gives a formal definition of
redundant features. Peng et al. [150] propose a greedy algorithm (named as
mRMR) to select features with minimum redundancy and maximum depen-
dency. Zhao et al. [155] develop an efficient spectral feature selection algo-
rithm to minimize the redundancy within the selected feature subset through
Ly1 norm. Recently, researchers pay attention to unsupervised feature se-
lection with global minimized redundancy [156] [157]. Several graph based
approaches are proposed in [158], [159]. The most closed research work to us
is [160] which build a sparse graph at feature side and ranking features by
approximation errors.

7.3 Background and Preliminaries

7.3.1 Unsupervised Feature Selection

Indication
Vectors
Spectral l Sparse
Clustering | a1 92 ™ ‘i Learning
Feature :> e €y v ey Supervised Feature
Matrix P Selection
‘nl n2 T Cnk

Top K Eigenvectors

Figure 7.1: The framework of sparse learning based unsupervised feature se-
lection.

In unsupervised feature selection framework, we don’t have label infor-
mation to determine the feature relevance. Instead, the data similarity or
manifold structure constructed from the whole feature space are used as cri-
teria to select features. Among all those algorithms of unsupervised feature
selection, the most famous one is MCFS. The MCFS algorithm is a sparse
learning based unsupervised feature selection method which can be illustrated
as figure 7.1. The core idea of MCFS is to use the eigenvectors of graph Lapal-
cian over similarity graph as indication vectors. And then find set of features
that can approximate these eigenvectors through sparse linear regression. Let
us assume the input data has number K clusters that is known beforehand
(or an estimated K value by the expert’s domain knowledge). The top K

91

non-trivial eigenvectors, Y = [yy, -+, yg], form the spectral embedding Y of
the data. Each row of Y is the new coordinate in the embedding space. To
select the relevant features, MCFS solves K sparse linear regression problems
between F' and Y as:

min [|y; — Foul|* + Bllex |, (7.1)

where «; is a n-dimensional vector and it contains the combination coefficients
for different features f; in approximating y;. Once all coefficients «; are col-
lected, features will be ranked by the absolute value of these coefficients and
top features are selected. This can be show by a weighted directed bipartite
graph as following:

® Eigenvector
@ Feature vector

Figure 7.2: Sparse learning bipartite graph for MCFS.

7.3.2 Adaptive Structure Learning for High Dimen-
sional Data

As we can seen, the MCFS uses whole features to model the structure of
data. That means the similarity graph such as Gaussian similarity graph
is built from all features. This is problematic when the dimension of data
vector goes higher. To be specific, the pairwise distance between any two
data vectors becomes almost the same, and as a consequence of that, the
obtained structural information of data is not accuracy. This observation
is the motivation of unsupervised Feature Selection with Adaptive Structure
Learning (FSASL) algorithm which is proposed by Du et al. [147]. The idea of

92

Indication

Vectors
Spectral l Sparse
Clustering | ‘1 2 ™ ‘i Learning
Feature e ey v ey Supervised Feature

‘nl n2 T Cnk

Top K Eigenvectors

New Feature Matrix

Figure 7.3: Unsupervised Feature Selection with Adaptive Structure Learning.

FSASL is to repeat MCFS iteratively with updating selected feature sets. It
can be illustrated as following: FASAL is an iterative algorithms which keeps
pruning irrelevant and noisy features to obtain better manifold structure while
improved structural info can help to search better relevant features. FASAL
shows better performance in normalized mutual information and accuracy than
MCEFS generally. However, it’s very time consuming since it is an iterative
algorithm includes many eigen-decompositions.

7.3.3 Redundant Features

For high dimensional data X € R"*?, it exists information redundancy among
features since d < n. Those redundant features can not provide further per-
formance improvement for ongoing learning task. Instead, they impair the
efficiency of learning algorithm to find intrinsic data structure.

In this section, we describe our definition of feature redundancy. Unlike
the feature redundancy defined bt Markov blanket [153] which is popular in
existing research works, our definition of feature redundancy is based on the
linear correlation between two vectors (the “vector” we used here could be a
feature vector or a linear combination of several feature vectors.) To measure
the redundancy between two vectors f; and f;, squared cosine similarity|[156]
is used:

Ri; = cos*(fi, f;)- (7.2)
By the math definition of cosine similarity, it is straightforward to know that
a higher value of R; ; means high redundancy existing between f; and f;. For
example, feature vector f; and its duplication f; will have R;; value equals to
one. And two orthogonal feature vectors will have redundancy value equals to

93

Zero.

7.4 Problem Statement

In this work, our goal is to detect those redundant features existing in high
dimensional data and obtain a more accurate intrinsic data structure. To be
specific:

Problem 5. Given a high dimensional data represented in the form of feature
matriz X, how to remove those redundant features f(.y € X7 for unsupervised
feature selection algorithms such as MCFS?

Technically, the MCFS algorithm does not involve redundant features.
However, the performance of MCFS depends on the quality of indication vec-
tors which are used to select features via sparse learning. And those indication
vectors are highly related to the intrinsic structure of data which is described
by the selected features and given distance metric. For example, the MCFS
algorithm uses all features and Gaussian similarity to represent the intrin-
sic structure. This is the discussed ‘chicken-and-egg” problem [147] between
structure characterization and feature selection. The redundant and noise fea-
tures will lead to an inaccurate estimation of data structure. As a result, it’s
very demanding to remove those redundant (and noise) features before the
calculation of indication vectors.

7.5 Algorithm

In this section, we present our graph-based algorithm to detect and remove
redundant features existing in high dimensional data. First, the sparse feature
graph that modeling the redundancy among feature vectors will be introduced.
Secondly, the sparse representation error will be discussed. In the last, the local
compressible subgraph is proposed to extract redundant feature groups.

7.5.1 Sparse Feature Graph (SFG)

The most popular way to model the redundancy among feature vectors is
correlation such as Pearson Correlation Coefficient (PCC). The correlation
value is defined over two feature vectors, and it’s a pairwise measurement.
However, there also exiting redundancy between one feature vector and a set
of feature vectors according to the philosophy of MCFS algorithm. In this
section, we present SFG, which model the redundancy not only between two
feature vectors but also one feature vector and a set of feature vectors.

94

The basic idea of sparse feature graph is to looking for a sparse linear
representation for each feature vector while using all other feature vectors as
dictionary. For each feature vector f; in features set F = [f1, fay-++, fal,
SF'G solves the following optimization problem:

min || f; — a2, st. |lello < L, (7.3)

acRd-1

where ®' = [f1, fo,+ 5 fi_1s fiz1,*** fa] is the dictionary of f; and each
column of ®° is a selected feature from data matrix X. L is a constraint to
limit the number of nonzero coefficients. In SFG, we set it to the number
of features d. The «; is the coefficient of each atom of dictionary ®°. This
coefficient vector not only decides the edge link to f; but also indicates the
weight of that connection. The resulted SFG is a weighted directed graph and
may have multiple components.

Sparse Feature Graph Indication Vectors

X
\\O‘/ Level 1

Level 2

@ Feature vector
® Eigenvector

Figure 7.4: Sparse feature graph and its relation with indication vectors. Level
1 features are direct sparse representation of those calculated indication vec-
tors. Level 2 features only have representation relationship with level 1 features
but not with indication vectors.

To solve the optimization problem 7.3, we use Orthogonal Matching Pur-
suit (OMP) solver [66] here since the number of features in our datasets is
larger than 1,000. We modify the stop criterion of OMP by checking the value
change of residual instead of residual itself or the maximum number of sup-
ports. The reason is that we want the number of supports (or say, the number
of edge connections) to follow the raw data property. Real world datasets are
always noisy and messy. It’s highly possible that several feature vectors may
fail to find a correct sparse linear representation through OMP. If we set resid-

95

ual or maximum of supports as criteria, we can not differentiate the successful
representations and the failed ones.
The OMP solver and SFG algorithm can be described as following.

Algorithm 14: Orthogonal Matching Pursuit (OMP)
Input : P = [fla f27 S fi—17 fi+17 T fd] € Rnx(d—l)’ .fz € Rna €.
Output: Coefficient «;.

1 Initialize residual difference threshold rq = 1.0, residual gy = f;, support
set To=0,k=1;

2 while £ < d—1 and |ry — rp_1| > e do
3 Search the atom which most reduces the objective:
4 j* = arg min {min | fi — @pu{j}aH%};
jere @
5 Update the active set:
6 Fk :Fk_1U{j*};
7 Update the residual (orthogonal projection):
8 qr = (I - @Fk(@%k@rk>_l(b%k)flﬂ
9 Update the coefficients:
10 ar, = (@%k@pk)_ltﬁ%kfi;
1|7 = [l ;
12 k+—k+1;
13 end

7.5.2 Sparse Representation Error

In our modified OMP algorithm 14, we set a new stop criterion of search-
ing sparse representation solution for each feature vector f;. Instead of keep
searching until arriving a minimization error, we stop running while the solver
could not reduce the length of residual vector anymore. To be specific, the
2-norm of residual vector is monitored and the solver will stop once the change
of this value small than a user specified threshold.

The reason we use this new stop criterion is that several feature vectors
may not find correct sparse representation in current dataset, and the ordi-
nary OMP solver will return a meaningless sparse representation when the
maximum iteration threshold arrived. Since the goal of SFG is not to find
a correct sparse representation for every feature vectors, we utilize the new
stop criterion and add a filter process in our algorithm to identify those failed
sparse representation.

96

Algorithm 15: Sparse Feature Graph

Input : Data matrix F = [fi, fa,- -+, fa] € R™*%
Output: Adjacent matrix W of Graph G € R%*¢;

1 Normalize each feature vector f; with || fi||3 = 1;

2 fori=1,---,d do

3 ‘ Compute a; from OMP(F_;, f;) using algorithm 14;

4 end

5 Set adjacent matrix W;; = a;(3) if i > j, Wi = a;(j — 1), if i < j and
Wy =0if i == j;

Figure 7.5: Illustration of sparse representation error. SFG is a weighted
directed graph.

To identify those failed sparse representation, we check the angle between
the original vector and the linear combination of its sparse representation. In
the language of SFG, we check the angle between a node (a feature vector)
and the weighted combination of its one-ring neighbor. Only the neighbors of
out edges will be considered. This can be illustrated by following figure 7.5.
As the example in Figure 7.5, node f; has seven one-ring neighbors. But only

bm fi,bmfa, f3, f5, fs are its sparse representation and f; and f; are not. Then
the sparse representation error (is calculated by:

Ii=wifi +wofo +wsfs +wsfs + we fs,
¢ = arccos(fi, f).
Once we have the SFG, we calculate the sparse representation errors for all
nodes. A sparse representation is treated as fail if the angle (less than a user

specified value. We will filter out these node which has failed representation
by removing its out-edges.

97

7.5.3 Local Compressible Subgraph

We group high correlated features through local compressible subgraphs. The
SFG G is a weighted directed graph. With this graph, we need to find all fea-
ture subsets that has very high redundancy. To archive this goal, we propose a
local search algorithm with seed nodes to group those highly correlated features
into many subgraphs which are named as local compressible subgraphs in this
chapter. Our local search algorithm involves two steps, the first step is to sort
all nodes by the in-degree. By the definition of SFG, the node with higher in-
degree means it appears more frequently in other nodes’ sparse representation.
The second step is a local bread-first search approach which finds all nodes
that has higher weight connections (in and out) to the growing subgraph. The
detail subgraph searching algorithm can be described by: In Alg. 16, function

Algorithm 16: Local Compressible Subgraphs.
Input : Weighted directed graph G = (V, E), edge weight threshold 6;
Output: Local compressible subgraphs C' .

Tag all nodes with initial label 0;
Sort the nodes by its in-degree decreasingly;
current_label = 1;
forn=1:|V|do
if label(n) ! = 0 then
‘ continue;
end
set label of node n to current_label,
BFS(n, 0, current_label);
current_label + = 1;

© 00 N & Uk W N =

=
o

end

/* current_label now has the maximum value of labels. */
12 for i = 1 : current_label do

13 Extract subgraph c¢; which all nodes have label ;

14 if |¢;| > 1 then

15 ‘ add ¢; to C;

16 end

=
=

17 end

label(n) check the current label of node n, and BF'S(n, 0, current_label) func-
tion runs a local Breadth-First search for subgraph that has edge weight large
than 6.

98

7.5.4 Redundant Feature Removal

The last step of our algorithm is to remove the redundant features. For each
local compressible subgraph we found, we pick up the node which has the
highest in-degree as the representative node of that local compressible sub-
graph. So the number of final feature vectors equals to the number of local
compressible subgraphs.

7.6 Experiments

In this section, we present experimental results to demonstrate the effective-
ness of our proposed algorithm. We first evaluate the spectral clustering per-
formance before and after applying our algorithms. Secondly, we show the
performance of MCFS with or without our algorithm. In the last, the proper-
ties of generated sparse graphs and sensitivity of parameters are discussed.

7.6.1 Experiment Setup

Datasets. We select twelve real-world high dimensional datasets [161] from
three different domains: Image, Text and Biomedical. The detail of each
dataset is listed in Table 7.1. The datasets have sample size different from 96
to 8293 and feature size ranging from 1,024 to 18,933. Also, the datasets have
class labels from 2 to 64. The purpose of this selection is to let the evaluation
results be more general by applying datasets with various characteristics.

’ Name \ #Sample \ #Feature \ #Class \ Type ‘
ORL 400 1024 40 Image
Yale 165 1024 15 Image
PIE10P 210 2420 10 Image
ORL10P 100 10304 10 Image
BASEHOCK 1993 4862 2 Text
RELATHE 1427 4322 2 Text
PCMAC 1943 3289 2 Text
Reuters 8293 18933 65 Text
lymphoma 96 4026 9 Biomedical
LUNG 203 3312 5 Biomedical
Carcinom 174 9182 11 Biomedical
CLL-SUB-111 111 11340 3 Biomedical

Table 7.1: High dimensional datasets.

99

Normalization. The features of each dataset are normalized to have unit
length, which means || f;||2 = 1 for all datasets.

Evaluation Metric. Our proposed algorithm is under the framework of un-
supervised learning. Without loss of generality, the cluster structure of data
is used for evaluation. To be specific, we measure the spectral clustering per-
formance with Normalized Mutual Information (NMI) and Accuracy (ACC).
NMI value ranges from 0.0 to 1.0, with higher value means better clustering
performance. ACC is another metric to evaluate the clustering performance
by measuring the fraction of its clustering result that are correct. Similar to
NMI, its values range from 0 to 1 and higher value indicates better algorithm
performance.

Suppose A is the clustering result and B is the known sample label vec-
tor. Let p(a) and p(b) denote the marginal probability mass function of A
and B, and let p(a,b) be the joint probability mass function of A and B.
Suppose H(A), H(B) and H(A, B) denote the entropy of p(a), p(b) and p(a, b)
respectively. Then the normalized mutual information NMI is defined as:

H(A)+ H(B) — H(A, B)

NMI(A,B) = maz(H(A), H(B))

(7.4)

Assume A is the clustering result label vector, and B is the known ground
truth label vector, ACC is defined as:

S 6(B(i), Map(ap ()

_ =l
ACC = ¥ (7.5)

where N denotes the length of label vector, d(a,b) equals to 1 if only if a and
b are equal. Mapy p is the best mapping function that permutes A to match
B.

7.6.2 Effectiveness of Redundant Features Removal

Our proposed algorithm removes many features to reduce the dimension size of
all data vectors. As a consequence, the pairwise Euclidean distance is changed
and the cluster structure will be affected. To measure the effectiveness of our
proposed algorithm, we check the spectral clustering performance before and
after redundant feature removal. If the NMI and ACC values are not changed
to much and stay in the same level, the experiment results show that our
proposed algorithm is correct and effective.

100

Yale PIE10P ORL10P

~Different § =—Different # W,
- All features - All features T,
08 08 08
_065 _086 —Different &
S T e - s - - All features
z + z
04 04
02 02 02 02
0 9 0 0
90% 70% 50% 80% 10% 90% 70% 50% 30% 10% 90% 70% 50% 30% 10% 90% 70% 50% 30% 10%
l 0 [[
; ORL ; Yale | PIE10P . ORL10P
——Different 0 ——Different 0 ——Different ¢
-~ All features| - All features - Allfeatures| At
08 08 08 08 e
06 06 06 ~Different §
§ e E— § e RS § " All features
04 ~ 0.4 he ~ 04
02 02 02 02
0 9 0 0
90% 70% 50% 80% 10% 90% 70% 50% 30% 10% 90% 70% 50% 30% 10% 90% 70% 50% 30% 10%
[[[[
ORL Yale PIE10P ORL10P
1200 1200 2800p - 12000
1000 F ~= = mommmmmmmmo oo 1000 =""TTm e ok N 10000k e
g g \ 52000 N\ g 10000
2 800\ 3 800 \ 2 \ El
8 \\ 8 \\ §1500 \ 8 8000
S 600 - 5 600 ~ s \ s
2 ~ 2 2 2
5 ~ 3 §1000 \ g 6000 \
£ 400 £ 400 \ £ o €
5 S 5 — E
Z 00 i} Z .0 . Z 500 S, 2 4000 .
-~ ~— S
0 = 9 0 2000 =
90% 70% 50% 30% 10% 90% 70% 50% 30% 10% 90% 70% 50% 30% 10% 90% 70% 50% 30% 10%
6

Figure 7.6: Spectral clustering performance of image datasets with different
parameter #. Top row: NMI; Middle row: ACC; Bottom row: number of
features, the red dash line means the size of raw dataset.

The spectral clustering algorithm we used in our experiments is the Ng-
Jordan-Weiss (NJW) algorithm [42]. The Gaussian similarity graph is applied
here as the input and parameter o is set to the mean value of pairwise Eu-
clidean distance among all vectors.

Our proposed LCS algorithm includes a parameter 6 which is the threshold
of redundancy. It decides the number of redundant features implicitly, and
affects the cluster structure of data consequently. In our experiment design,
we test different # values ranging from 90% to 10% with step size equal to
10%: 6 =10.9,0.8,0.7,--- ,0.1].

We present our experiment results for image datasets, text datasets, and bi-
ological datasets in Figure 7.6, Figure 7.7 and Figure 7.8 respectively. For each
dataset, we show the NMI, ACC performance with different # and comparing
with original spectral clustering performance by using all features. From the
experimental results, we can read that: Even when 6 is reduced to 30%,
the NMI and ACC values are staying in same level as original data.
When 6 equals to 30%, it means the edges of SFG that with weights (absolute
value) in the highest 70% value range are removed. (It does not mean that 70%
of top weights edges are removed). This observation validate the correctness
of our proposed algorithm.

101

Basehock

Reuters
1 : Relathe 035 PCMAC 1
0.3 0.8
.25 _06
s
z
0.2 04
N U S
0.15 0.2
0 0.4 0
90% 70% 51;% 30% 10% 90% 70% 5(()]% 30% 10% 90% 70% 5%”& 30% 10% 90% 70% 5%% 30% 10%
Basehock 1 Relathe y PCMAC 1 Reuters.
0.8 0.8 0.8
X oo 0.6 0.6 0.6
§ o § | S D D S Y § e, §
0.4 04 0.4 04
0.2 0.2 0.2 0.2
0 0 [} 0
90% 70% 5(;‘% 30% 10% 90% 70% 5%% 30% 10% 90% 70% 5(;‘% 30% 10% 90% 70% 5%% 30% 10%
Basehock Relath PCMA * Reuters
5000 asehocl 4400 elathe 3300 CMAC 1,910 .
4800 4300 T 3250 1.8 \
o @ \ o 2 \
¢ 3 \ ¢ 4 \
5 \
% 4600 % 4200 \ 23200 217 \
2 2 \ 2 2 \
5 4400 - 54100 \ 53150 516 \
5 ~ 5 5 3 \
£ 4200 £ 4000 £3100 £15 \
5 5 5 5 \
z Z z Z \
4000 3900 3050 14 \
380 3800 300 1
é)O% 70% 5%% 30% 10% 90% 70% 5%”& 30% 10% gO% 70% SOH% 30% 10% 30% 70% 5%% 30% 10%

Figure 7.7: Spectral clustering performance of text datasets with different
parameter ¢#. Top row: NMI; Middle row: ACC; Bottom row: number of
features, the red dash line means the size of raw dataset.

1 lymphoma 1 LUNG 1 Carcinom 1 CLL-SUB-111

S D U D N
o

0 0 0
90% 70% 50% 30% 10% 90% 70% 50% 30% 10% 90% 70% 50% 30% 10% 90% 70% 50% 30% 10%
0 o o o

1 lymphoma 1 LUNG 1 Carcinom 1 CLL-SUB-111
0.8 0.8
0.6 0.6
Q Q
< 2 8 e
0.4 0.4
0.2 0.2 0.2 0.2

0 0
90% 70% 50% 30% 10% 80% 70% 50% 30% 10% 90% 70% 50% 30% 10% 80% 70% 50% 30% 10%
o 6 0 o

5000 lymphoma 3500 10000 Carcinom 12000 CLL-SUB-111
3000 11000
4000 o @ 8000 @
8 8 8 810000
¢ $2500 5 El
$ o000 &2000 & 6000 § 9000
5 s s S 8000
gmo %1500 g 4000 g 7000
E E 1000 E E
Z 1000 z Z 2000 2 6000
500 - 5000
— — s 4009
So% 0% 0% 0% 10% % To% S0% 0% 10% So% 0% So% a0 10% S0% 70% 0% 30% 10%
0 0 0

Figure 7.8: Spectral clustering performance of biomedical datasets with dif-
ferent parameter 6. Top row: NMI; Middle row: ACC; Bottom row: number
of features, the red dash line means the size of raw dataset.

102

7.6.3 Performance of MCFS

Our proposed algorithm is targeting for unsupervised feature selection. And
the quality of indication vectors (or the spectral clustering performance based
on eigenvectors) is an important factor evaluate the effectiveness of our pro-
posed algorithm. In this section, we evaluate the MCFS performance over
the redundant feature removed data, and comparing with the raw data that
without any feature removal.

The spectral clustering performance is measured for different input data
from original whole feature data to processed ones by our proposed algorithm
with different 8. We report the experiment results over image datasets and bi-
ological datasets in this section. For text datasets, the feature vectors of them
are very sparse, and our eigen decomposition process are always failed and we
only can collect partial results. For fair evaluation, we omit the experiment
results of text datasets in this work. The result of MCFS performance shows
from Table 7.2 to Table 7.17.

For each dataset, we set the number of selected features ranging from
[5,10,15,- -+ ,60], which has 11 different sizes in total. The parameter 6 is
configured from 0.9 to 0.1 with stepsize equals to 0.1.

We report the experimental results in tables (from Table 7.2 to Table 7.17).
For each table, the first row means the number of features that used as input of
MCFS. The first column is the number of selected features by MCFS algorithm.
The baseline is in the second column, which is the testing result of MCFS
algorithm with raw data. The hyphens in the tables means the number of
selected features is larger than the feature size of input data, which means
invalid test. To show the effectiveness of our algorithm, we also mark those
NMI and ACC scores that larger or equals to baseline in bold text.

7.6.4 Sparse Representation Errors

With the design of our modified OMP solvers, there will be failed /wrong sparse
representations existing in generated sparse feature graph. The meaning of
these edge connections and edge weights are invalid. And they should be
removed from the SFG since wrong connections will deteriorate the accuracy
of feature redundancy relationship. To validate the sparse representation,
we check the angle between original feature vector and the linear weighted
summation resulted vector (or recover signal from sparse coding point of view)
from its sparse representation. If the angle lower than a threshold, we remove
all out-edges from the generated sparse feature graph. To specify the threshold,
we learn it from the empirical results of our selected twelve datasets. The
distribution (or histogram) result of angle values is presented in figure 7.9.

103

#/][1024] 913 620 535 469 327 160 104 58 33 | [#f[[1024][913 620 535 469 327 160 104 58 33 |
10 [0.63] 051 0.60 0.56 0.53 0.62 0.61 0.65 0.60 0.62| [10 [[0.38][0.28 0.36 0.31 0.28 0.39 0.39 0.46 0.39 0.41
15 |/ 0.66 | 0.56 0.63 0.60 0.58 0.67 0.62 0.60 0.63 0.58| |15 || 0.45 | 0.33 041 040 0.34 043 040 038 0.42 0.36
20 || 0.67 | 0.59 0.65 0.64 0.59 0.64 0.63 0.61 0.64 0.56| |20 [0.47 | 0.34 0.43 043 0.35 043 041 0.39 043 0.32
25 || 0.67 | 0.59 0.66 0.64 0.63 0.65 0.66 0.64 0.65 0.58| |25 | 0.48 [0.35 045 044 0.37 042 047 041 045 0.34
30 || 0.68 0.63 0.66 0.65 0.66 0.67 0.65 0.67 0.65 0.59| |30 [047|040 042 042 043 047 043 045 042 0.35
35 [0.69|| 0.64 0.70 0.66 0.65 0.67 0.67 0.68 0.65 - 35 049041 048 046 044 0.44 047 047 042 -

40 | 0.70|| 0.67 0.71 0.68 0.67 0.68 0.70 0.70 0.66 - 40 | 051046 0.53 048 0.46 0.45 048 0.51 043 -

45 || 0.70 || 0.69 0.70 0.69 0.66 0.69 0.70 0.69 0.65 - 45 11049 | 0.47 0.51 0.51 0.44 0.48 0.49 0.49 043 -

50 || 0.73] 0.71 0.72 0.68 0.66 0.70 0.72 0.69 0.66 - 50 || 0.55 | 0.51 0.52 0.47 047 0.50 0.52 048 046 -

55 || 0.71| 0.74 0.70 0.68 0.67 0.71 0.71 0.71 0.66 - 55 | 0.53]/0.53 0.51 0.46 045 0.48 0.50 0.53 0.46 -

60 ||0.71]] 0.74 0.71 0.72 0.71 0.69 0.72 0.71 - - 60 || 0.51]0.55 0.52 0.54 0.51 0.47 0.54 051 - -

Table 7.2: NMI results of “ORL” Table 7.3: ACC results of “ORL”
dataset dataset.

#/]1024]]1023 964 6b4 525 427 271 152 83 34 | [#f][1024]/1023 964 654 525 427 271 152 83 34
10 [[0.48] 0.43 043 0.45 042 046 045 046 047 0.44| [10 [0.39[0.36 0.37 0.36 0.33 038 0.41 0.40 0.41 0.36
15 || 0.49 || 0.47 0.46 0.51 0.49 048 045 047 0.50 0.43| |15 || 043|041 042 0.44 041 041 0.39 041 0.46 0.39
20 | 0.49 || 0.48 0.46 0.55 0.48 0.51 047 047 0.51 0.41| |20 | 044|042 041 0.48 0.44 0.44 043 042 0.44 0.35
25 | 051|049 0.49 0.52 0.52 0.52 0.45 0.49 0.54 0.41| |25 || 0.45[0.45 0.44 0.46 0.47 0.45 0.41 0.43 0.49 0.33
30 | 0.51]/0.51 0.49 0.54 0.50 0.51 0.51 0.49 0.50 0.39| |30 || 048|044 0.42 047 047 045 045 0.40 047 0.33
35 [053]/ 049 050 0.54 0.53 0.52 0.52 048 0.50 - 35 | 0.48(/0.48 0.44 0.50 047 046 047 041 044 -

40 || 0.49{/0.50 0.51 0.53 0.58 0.55 0.55 0.48 0.51 - 40 || 0.42{/0.44 0.45 0.50 0.55 0.48 0.53 0.41 0.44 -

45 | 0.48]/0.51 0.51 0.56 0.59 0.57 0.52 0.52 0.49 - 45 [0.41 | 0.48 0.46 0.51 0.53 0.54 0.49 0.47 0.42 -

50 | 0.52]|0.50 0.47 0.53 0.59 0.53 0.53 0.56 0.49 - 50 || 0.46 | 0.41 0.42 0.48 0.56 0.50 0.46 0.52 0.41 -

55 || 054|051 0.52 0.55 0.50 0.51 0.51 051 049 - 55 || 0.48 || 0.44 0.48 0.48 043 045 0.49 047 042 -

60 || 0.54(0.49 051 049 0.54 0.50 0.51 046 0.52 - 60 || 0.50 [0.42 044 040 0.50 0.41 046 042 043 -

Table 7.4: NMI results of “Yale” Table 7.5: ACC results of “Yale”
dataset dataset.

[#f][2420 2409 1871 793 698 662 654 630 566 324 | [#f[[2420][2409 1871 793 698 662 654 630 566 324 |
10 [0.44]0.48 0.55 0.53 0.58 0.56 0.54 0.61 0.50 0.33| [10 [[0.39]0.45 0.48 0.50 0.56 0.50 0.53 0.59 0.46 0.39
15 [0.44 | 0.61 0.57 0.50 0.58 0.58 0.55 0.59 0.53 0.39 | |15 | 0.39 |0.58 0.51 0.49 0.51 0.55 0.56 0.60 0.50 0.41
20 | 0.43]/0.56 0.61 0.59 0.60 0.56 0.62 0.59 0.56 0.41| |20 || 0.36 |0.51 0.53 0.53 0.55 0.56 0.60 0.54 0.50 0.38
25 | 0.52(0.61 0.61 0.64 0.61 0.60 0.58 0.58 0.54 0.43| |25 | 0.450.59 0.53 0.60 0.54 0.59 0.60 0.56 0.52 0.40
30 || 0.53]/0.61 0.62 0.57 0.62 0.62 0.60 0.53 0.63 0.41| |30 || 0.50 | 0.58 0.56 0.58 0.59 0.60 0.59 0.49 0.60 0.40
35 | 0.59||0.60 0.59 0.60 0.63 0.61 0.60 0.62 0.64 0.43| |35 || 0.48 |0.57 0.51 0.59 0.61 0.53 0.54 0.62 0.61 0.37
40 | 0.53]|0.60 0.58 0.57 0.66 0.62 0.59 0.62 0.69 0.42| |40 || 0.42|0.52 0.53 0.56 0.63 0.59 0.53 0.60 0.64 0.38
45 | 0.55||0.61 0.61 0.62 0.60 0.64 0.60 0.64 0.65 0.43 | |45 || 0.44 [0.52 0.52 0.58 0.51 0.63 0.54 0.62 0.60 0.41
50 | 0.56 || 0.63 0.62 0.68 0.64 0.62 0.58 0.63 0.66 0.37 | |50 | 0.44 |0.61 0.52 0.64 0.60 0.59 0.55 0.62 0.61 0.37
55 | 0.61]| 0.60 0.62 0.69 0.62 0.60 0.57 0.65 0.58 0.39| |55 | 0.46 | 0.54 0.53 0.67 0.58 0.57 0.57 0.63 0.54 0.37
60 || 0.55 | 0.64 0.63 0.64 0.60 0.63 0.54 0.63 0.51 0.39 | |60 [0.49 [0.60 0.61 0.61 0.57 0.61 0.51 0.61 0.46 0.35
Table 7.6: NMI results of “PIE10P” Table 7.7: ACC results of “PIE10P”
dataset dataset.

#/][10304 [10302 8503 3303 3408 3244 3030 2822 2633 2175] [#/]10304][10302 8503 3803 3408 3244 3030 2822 2638 2175
10 [0.65 || 0.78 0.77 0.76 0.77 0.80 0.74 0.72 0.75 0.73| [10 || 0.66 | 0.74 0.81 0.75 0.75 0.69 0.72 0.70 0.69 0.67
15 || 0.72 || 0.82 0.79 0.78 0.81 0.83 0.79 0.81 0.75 0.79| |15 | 0.69 || 0.85 0.76 0.78 0.78 0.86 0.80 0.75 0.73 0.75
20 || 0.76 || 0.81 0.74 0.78 0.84 0.83 0.81 0.76 0.80 0.78| |20 | 0.77 || 0.84 0.74 0.76 0.80 0.80 0.78 0.69 0.75 0.74
25 || 0.79 | 0.84 0.74 0.73 0.82 0.86 0.88 0.83 0.86 0.81| (25 | 0.71 || 0.79 0.68 0.74 0.78 0.86 0.84 0.82 0.82 0.74
30 || 0.75 || 0.77 0.82 0.74 0.88 0.82 0.83 0.83 0.86 0.86| |30 | 0.71 || 0.71 0.77 0.68 0.86 0.77 0.81 0.77 0.82 0.81
35 || 0.81 | 0.81 0.80 0.83 0.85 0.83 0.80 0.82 0.85 0.85| (35 | 0.74 || 0.74 0.74 0.76 0.81 0.77 0.73 0.76 0.82 0.78
40 || 0.83 || 0.88 0.84 0.84 0.90 0.86 0.81 0.93 0.84 0.87| |40 || 0.80 || 0.85 0.74 0.77 0.87 0.80 0.75 0.89 0.80 0.83
45 || 0.84 | 0.93 0.83 0.85 0.91 0.86 0.83 0.88 0.84 0.86| |45 | 0.82 || 0.89 0.73 0.81 0.88 0.78 0.77 0.86 0.80 0.79
50 || 0.78 | 0.88 0.88 0.87 0.89 0.86 0.82 0.90 0.84 0.83| |50 | 0.73 | 0.80 0.80 0.74 0.86 0.79 0.74 0.88 0.81 0.77
55 || 0.84 | 0.89 0.86 0.89 0.91 0.89 0.88 0.86 0.84 0.86| |55 | 0.79 || 0.85 0.82 0.86 0.89 0.87 0.80 0.82 0.81 0.79
60 || 0.85 | 0.88 0.86 0.84 0.85 0.91 0.85 0.88 0.86 0.85| [60 | 0.82 | 0.84 0.77 0.75 0.82 0.89 0.77 0.84 0.82 0.82

Table 7.8: NMI results of “ORL10P”

dataset

Table 7.9: ACC results of “ORL10P”

dataset.

104

#7]4026][4009 3978 3899 3737 3456 2671 1203 334 136 | [#/f[[4026] 4009 3978 3899 3737 3456 2671 1203 334 136
10 [[0.51][0.59 0.58 0.52 0.50 0.50 0.51 0.50 0.50 0.49] [10 [[0.50 [0.57 0.56 0.53 0.49 0.51 0.51 0.48 0.50 0.50
15 || 0.55|/0.60 0.62 0.56 0.58 0.58 0.58 0.56 0.47 0.52| |15 | 0.53|/0.62 0.59 0.58 0.56 0.59 0.58 0.55 0.50 0.53
20 || 0.60 | 0.61 0.60 0.57 0.62 0.62 0.64 0.58 0.58 0.60| [20 | 0.59 | 0.56 0.55 0.56 0.56 0.59 0.59 0.54 0.55 0.59
25 |(0.63 || 0.59 0.64 0.60 0.63 0.58 0.66 0.57 0.56 0.53 | |25 || 0.60 | 0.57 0.62 0.56 0.62 0.58 0.64 0.56 0.52 0.50
30 || 0.59 ||0.61 0.62 0.60 0.62 0.64 0.65 0.60 0.60 0.59| |30 | 0.56|/0.60 0.58 0.58 0.59 0.61 0.65 0.59 0.57 0.55
35 || 0.61 | 0.66 0.62 0.60 0.65 0.62 0.61 0.62 0.56 0.53 | |35 | 0.55|/0.62 0.59 0.58 0.61 0.60 0.57 0.59 0.55 0.53
40 || 0.64 || 0.60 0.66 0.63 0.61 0.63 0.66 0.61 0.58 0.55| [40 | 0.66 | 0.57 0.61 0.61 0.61 0.59 0.60 0.58 0.59 0.54
45 || 0.58 | 0.63 0.62 0.62 0.58 0.61 0.63 0.64 0.60 0.57 | |45 | 0.54{0.60 0.60 0.58 0.55 0.60 0.62 0.59 0.56 0.54
50 || 0.65 | 0.60 0.61 0.61 0.56 0.63 0.61 0.63 0.58 0.54| |50 | 0.65]|0.62 0.58 0.64 0.52 0.59 0.56 0.59 0.53 0.53
55 || 0.63 |/ 0.60 0.61 0.62 0.60 0.60 0.63 0.60 0.58 0.58 | |55 || 0.57||0.60 0.65 0.60 0.54 0.57 0.65 0.59 0.54 0.59
60 || 0.60 || 0.60 0.63 0.61 0.63 0.59 0.65 0.59 0.57 0.57 | |60 | 0.56 || 0.58 0.64 0.58 0.61 0.57 0.67 0.56 0.53 0.57
Table 7.10: NMI results of “Lym- Table 7.11: ACC results of “Lym-
phoma” dataset phoma” dataset.

[#/][3312][3311 3309 3236 1844 559 384 344 305 183 |#/|3312]/3311 3309 3236 1844 559 384 344 305 183
10 0.4210.42 0.43 0.49 0.52 0.53 0.43 0.46 0.43 0.25 10 [0.71|[0.72 0.73 0.77 0.77 0.75 0.68 0.65 0.66 0.56
15 | 054]0.54 053 051 051 051 045 052 0.38 0.21| |15 || 0.81(0.81 0.79 0.72 0.73 0.72 0.67 0.65 0.58 0.48
20 || 0.51|/0.51 0.52 0.53 0.41 0.49 0.36 0.52 0.38 0.20| |20 || 0.71]/0.73 0.74 0.72 0.69 0.69 0.61 0.60 0.58 0.39
25 | 0.510.51 0.53 0.48 042 0.52 0.40 048 0.35 0.26| |25 ||0.71(0.71 0.74 0.67 0.69 0.68 0.59 0.61 0.56 0.49
30 || 0.47 ||0.48 0.52 0.49 0.41 0.37 0.49 0.48 0.41 0.24| |30 | 0.66 ||0.66 0.67 0.71 0.68 0.56 0.59 0.59 0.61 0.43
35 || 0.46 || 0.38 0.46 0.48 0.39 0.52 0.49 0.38 0.35 0.27| |35 | 0.64 || 0.60 0.63 0.68 0.66 0.60 0.58 0.56 0.53 0.49
40 |/ 0.49 |0.49 0.50 0.46 0.43 0.40 0.38 0.35 0.40 0.29| |40 |/ 0.65||0.65 0.66 0.65 0.64 0.57 0.54 0.54 0.56 0.46
45 |/ 0.36 || 0.42 0.33 0.47 0.40 0.33 0.38 0.35 0.35 0.31| |45 | 0.60 ||0.63 0.57 0.65 0.61 0.52 0.54 0.52 0.52 0.49
50 |/ 0.45/0.45 0.47 0.49 0.52 0.32 0.40 0.36 0.35 0.31 50 | 0.65||0.65 0.63 0.65 0.65 0.48 0.57 0.53 0.53 0.52
55 || 0.44 |/ 0.44 0.44 0.49 0.51 0.33 0.49 0.31 0.30 0.31| |55 || 0.610.61 0.59 0.65 0.62 0.48 0.59 0.48 0.49 0.49
60 | 0.471 0.46 0.45 0.51 0.49 0.33 0.39 0.32 0.31 0.35 60 10641063 0.63 0.64 0.62 051 0.55 0.49 0.48 0.51

Table 7.12: NMI results of “LUNG”

Table 7.13: ACC results of “LUNG”

dataset dataset.

#1191821] 9180 9179 9150 7736 3072 697 449 360 144 #£1/9182(/9180 9179 9150 7736 3072 697 449 360 144
10 || 0.70 ||0.70 0.70 0.69 0.67 0.64 0.66 0.65 0.66 0.47 10 || 0.63 [|0.66 0.62 0.61 0.67 0.60 0.60 0.59 0.64 0.48
15 || 0.71]/ 0.70 0.73 0.73 0.74 0.66 0.67 0.70 0.66 0.52 15 || 0.67 || 0.57 0.70 0.66 0.68 0.63 0.57 0.67 0.64 0.53
20 || 0.77]/0.78 0.77 0.72 0.75 0.72 0.73 0.71 0.73 0.54 20 || 0.70 || 0.68 0.74 0.66 0.71 0.71 0.64 0.73 0.74 0.56
25 0.74 |0.77 0.77 0.75 0.74 0.71 0.79 0.75 0.74 0.53 25 0.70 {|0.72 0.75 0.69 0.75 0.64 0.75 0.72 0.76 0.51
30 || 0.691(0.71 0.72 0.70 0.74 0.75 0.77 0.79 0.73 0.54 30 || 0.61 ||0.64 0.70 0.69 0.67 0.71 0.74 0.76 0.71 0.52
35 || 0771 0.76 0.76 0.76 0.74 0.77 0.78 0.78 0.78 0.60 35 11 0.76 || 0.74 0.74 0.74 0.70 0.75 0.70 0.76 0.77 0.57
40 || 0.751]| 0.74 0.76 0.77 0.74 0.79 0.76 0.78 0.75 0.59 40 |1 0.72]/0.72 0.73 0.75 0.69 0.76 0.66 0.78 0.71 0.56
45 |1 0.77110.76 0.74 0.78 0.74 0.82 0.78 0.80 0.79 0.57 45 (1 0.75 | 0.74 0.70 0.75 0.74 0.79 0.72 0.79 0.76 0.55
50 || 0.79 | 0.76 0.75 0.75 0.79 0.76 0.79 0.84 0.83 0.58 50 |/ 0.74]/0.74 0.70 0.72 0.74 0.66 0.74 0.83 0.79 0.56
55 1 0.75|]0.76 0.76 0.74 0.75 0.79 0.79 0.83 0.83 0.59 55 11 0.73 1/0.74 0.74 0.72 0.71 0.72 0.72 0.82 0.80 0.56
60 || 0.741]| 0.72 0.76 0.73 0.76 0.82 0.84 0.82 0.78 0.62 60 || 0.70 || 0.61 0.71 0.66 0.72 0.75 0.82 0.80 0.77 0.55
Table 7.14: NMI results of “Carci- Table 7.15: ACC results of “Carci-
nom” dataset nom” dataset.

#111340{ 11335 11301 10573 8238 7053 6697 6533 6180 4396 #/111340][11335 11301 10573 8238 7053 6697 6533 6180 4396
10 0.16 || 0.16 0.15 0.26 0.18 0.22 0.20 0.20 0.20 0.21 10 0.51 0.51 0.50 0.54 0.59 0.57 0.58 0.55 0.51 0.50
15 0.14 0.14 0.15 0.26 0.18 0.28 0.09 0.24 0.07 0.06 15 0.51 0.51 0.50 0.57 0.55 0.62 0.47 0.59 0.45 0.43
20 0.16 0.16 0.15 0.08 0.14 0.21 0.04 0.31 0.16 0.11 20 0.50 0.50 048 046 0.50 0.54 0.40 0.59 0.54 0.50
25 0.14 || 0.14 0.15 0.09 0.08 0.22 0.23 0.10 0.09 0.11 25 0.48 || 0.48 0.51 044 046 0.54 0.57 0.50 0.46 0.50
30 0.13 0.13 0.13 0.08 0.07 0.18 0.03 0.14 0.10 0.11 30 0.49 0.49 049 044 0.44 0.53 0.42 0.51 0.48 0.48
35 0.17 || 0.17 0.13 0.03 0.07 0.12 0.10 0.01 0.08 0.10 35 0.51 0.51 049 042 044 049 0.49 041 044 048
40 0.14 0.14 0.14 0.07 0.08 0.13 0.12 0.05 0.14 0.09 40 0.51 0.51 0.50 043 045 050 0.49 0.43 0.48 047
45 0.09 || 0.09 0.18 0.08 0.11 0.10 0.13 0.07 0.12 0.09 45 0.46 045 0.52 044 0.46 0.47 0.51 0.45 0.47 0.47
50 0.15 0.14 0.15 0.08 0.11 0.11 0.12 0.12 0.13 0.09 50 0.51 0.50 0.51 045 0.46 050 0.49 0.49 0.49 048
55 0.15 || 0.15 0.14 0.21 0.08 0.13 0.13 0.12 0.13 0.07 55 049 || 0.49 0.50 0.54 0.46 0.50 0.50 0.49 0.49 0.45
60 0.10 0.10 0.14 0.15 0.08 0.10 0.12 0.12 0.14 0.07 60 0.49 0.49 0.50 0.53 0.43 0.48 0.49 0.49 0.50 0.44
Table 7.16: NMI results of “CLL- Table 7.17: ACC results of “CLL-

SUB-111" dataset

7.7 Chapter Summary

SUB-111" dataset.

In this chapter, we propose sparse feature graph to model both one-to-one
feature redundancy and one-to-many features redundancy. By separate whole

105

orl

yale

600 800 1600 pie10p 8000 orl10p
500 700 1400 7000
00 600 1200 6000
500 1000 5000
300 400 800 4000
200 300 600 3000
200 400 2000
100 100 200 1000
0 0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Angle Angle Angle Angle
pemac
1000 1000 relathe 700 reuters
600
800 800
500
600 600 400
400 400 300
200
200 200 100
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 40 60 40 60 100
Angle Angle Angle Angle
3000 lymphoma 2500 lung 5000 carcinom cll-sub-111
2500 2000 4000
2000
1500 3000
1500
1000 2000 2000
1000
500 500 1000 1000
0 0 0 0
0 20 40 60 100 0 2 40 60 80 100 0 20 40 60 100 0 20 40 60 100
Angle Angle Angle Angle

Figure 7.9: The distribution of angle between original feature vector and its

sparse representation.

features into different redundancy feature group through local compressible
subgraphs, we reduce the dimensionality of data by only select one represen-

tative feature from each group. One advantage of our algorithm is that it

does not need to calculate the pairwise distance which is always not accurate

for high dimensional datasets. The experiment results shows that our algo-

rithm is an effective way to obtain accurate data structure information which

is demanding for unsupervised feature selection algorithms.

106

Chapter 8

Capturing Properties of Names
with Distributed
Representations

In this chapter, we introduce the technique of distributed name embeddings,
which represents names in a vector space such that the distance between name
components reflects the degree of cultural similarity between them. We pro-
pose approaches to constructing such name embeddings using large volume of
Email contact lists that record the human communication patterns and so-
cializing preferences. We evaluate the cultural coherence of such embeddings,
and demonstrate that they strongly capture gender and ethnicity information
encoded in names. Finally, we propose two applications of the name embed-
dings, including a fake-contact generation process for security login challenges,
and a large-scale look-alike names construction algorithm. Both applications
generation names that respect cultural coherence and name popularity.

8.1 Chapter Introduction

Names are important. The names that people carry with them are arguably
the strongest single facet of their identity. Names convey cues to people’s
gender, ethnicity, and family history. Hyphenated last names suggest possible
marital relationships. Names even encode information about age, as social
trends alter the popularity of given names.

In this chapter, we propose distributed name embeddings as a way to cap-
ture the cultural coherence properties of human names, such as gender and
ethnicity. Our distributed name embeddings are trained on a real-world Email
contact lists dataset which contains millions of “who-contact-who” records.

107

Male names | 1th NN | 2nd NN | 3rd NN | 4th NN | 5th NN || Female names | 1th NN | 2nd NN | 3rd NN | 4th NN 5th NN
Andy Andrew Ben Chris Brian Steve Adrienne Allison | Aimee Amber Debra Amy
Dario Pablo Santiago | Federico | Hernan Diego Aisha Alivah | Nadiyah | Khadijah Akil Aliya
Elijah [saiah Joshua Jeremiah | Bryant Brandon || Brianna Brittany | Briana |Samantha| Jessica Christina
Felipe Rodrigo Rafael Eduardo | Fernando | Ricardo | Candy Connie 3ecky Angie Cindy Christy
Heath Brent Chad Brad Brett Clint
Hilton Xooma Eccie Erau Plexus | Gapbuster || Cheyenne Destiny | Madison | Brittany Taylor Kayla
[saac Samuel [srael Eli Esther Benjamin || Dominque Renarda | Lakenya Lakia Lashawna | Shatara
Jamal Jameel Kareem Anmar Khalifa Nadiyah | Ebonie Lakeshia | Tomeka Ebony Latasha | Shelonda
Lamar Terrell Derrick Eboni Tyree Willie Florida Fairfield | Integrity | Beacon | Southside | Missouri
Mohammad | Shahed | Mohmmad | Ahmad Rifaat Farishta || Gabriella Daniella | Vanessa | Marilisa | Isabella Elisa
Moshe Yisroel | Avraham Gitty Rivky Zahava Giovanna Giovanni | Elisa Paola Giuliana | Mariangela
Rocco Vito Salvatore | Vincenza | Pasquale | Nunzio
Salvatore Pasquale| Nunzio | Gennaro Vito Tommaso

Keren Ranit Galit Haim Zeev Rochel

Table 8.1: The five nearest neighbors (NN) of representative male and female
names in embedding space, showing how they preserve associations among
(Chinese, Korean, Japanese, Vietnamese), British, European (Span-
ish, Italian), Middle Eastern (Arabic, Hebrew), North American (African-
American, Native American, Contemporary), and Corporate/Entity.

Each contact list encodes a particular individual’s communicating customs
and social interaction patterns.

Our key insight is that people tend to communicate more with people
of similar cultural background and gender. Therefore if we embed names
in the vector space so that the distance between names parts reflects the
co-occurrence frequency, this embedding should capture aspects of culture
and gender. Inspired by recent research advances in distributed word em-
beddings [162], we demonstrate the utility of name embeddings as convenient
features to encode social/cultural information for classification tasks and other
applications.

Table 8.1 illustrates the power of our distributed name embeddings, by
presenting the five nearest-neighbors to a representative collection of male
and female first names. These neighbors overwhelmingly preseve the gender
and ethnicity of their center, capturing these properties without any labeled
training data.

The major contributions of our work are:

o Gender, ethnicity, and frequency preservation through name embeddings
— Through computational experiments involving ground truth data from
the U.S. Census and Social Security Administration, we show that our
name embeddings preserve such properties as gender and racial demo-
graphics for popular names and industrial sector for corporate contacts.
Even more surprisingly, our embeddings preserve frequency of occur-
rence, a property that to the best of our knowledge has never been
previously recognized in the distributed word embedding community.

e FEthnic/gender homophily in email correspondence patterns — Through
large-scale analysis of contact lists, we establish that there is greater

108

than expected concentration of names of the same gender and race for
all major groupings under study. We also establish that longer contact
lists contain smaller concentrations of men, suggesting that women have
larger correspondence circles than men.

o Applications of name embeddings — That names serve as people’s primary
societal identifier gives them power. Privacy requirements often make
it undesirable or even illegal to publish people’s names without their
express permission. Yet there are often technical contexts where we need
names which can be shared to represent things: to serve as placeholders
in databases, demonstrations, and scientific studies.

We employ name embeddings two different anonymization tasks in pri-
vacy and security applications: replacement names and de novo name
generation. To preserve privacy, it is often desired to generate a re-
placement name for a given person. However when replacing names
to anonymize (say) a medical study, dissonance is created when female
names are replaced by male ones, and the names of elderly patients
aliased by newly coined names. Generating names at random from com-
ponent first/last name parts will not respect gender, ethnicity, or tem-
poral biases: consider the implausibility of names like “Wei Hernandez”
or “Roberto Chen”. Name embeddings enable us to capture these cul-
tural properties to generate meaningful replacements. We propose a
new technique of representing the semantics of first/last names through
distributed name embeddings. By training on millions of email contact
lists, our embeddings establish cultural locality among first names, last
names, and the linkages between them, as illustrated by examples in
Table 8.1. Through nearest neighbor analysis in embeddings space, we
can construct replacement aliases for any given name which preserve this
cultural locality.

The outline of this chapter is as follows. Section 8.3 presents our approach
to constructing name embeddings, including an evaluation of different ap-
proaches. Section 8.4 establishes that name embeddings preserve information
concerning gender, ethnicity, and even frequency. In Section 8.6, we propose
two applications: (1) a security login challenge application with our look-alike
names, and (2) an efficient de novo look-alike names generation algorithm.
Section 8.2 reviews related work. We conclude in Section 8.7 with discussions
on remaining challenges.

109

Figure 8.1: Visualization of the name embedding for the most frequent 5,000
first names from email contact data, showings a 2D projection view of name
embedding (left). The pink color represents male names while orange denotes
female names. Gray names have unknown gender. The right figure presents
a close view along the male-female border, centered around African-American
names.

Figure 8.2: Visualization of the name embedding for the top 5000 last names,
showings a 2D projection view of the embedding (left). Insets (left to right)
highlight British | 1], African-American | 2| and Hispanic | 3| names.

8.2 Related Work

Word and Graph Embeddings. Neural word embedding techniques, ex-
emplified by the popular word2vec [163, 164], are now known to be effective
in capturing syntactic and semantic relationships. Levy and Goldberg [165]
found that the skipgram based word2vec embedding can be considered a ma-
trix factorization technique, with the matrix to be factored containing the
word-word point-wise mutual information. With this broad understanding of
word2vec in mind, the technique is applicable to tasks beyond those of tra-
ditional natural language processing. It can be employed whenever there is
a large amount of data consist of entities and their co-occurrence patterns.
Our work on name-embedding is such an example. Another example is Deep-
Walk [166], a novel approach for learning latent representations of vertices in

110

a graph by constructing “sentences” via random walk on the graph.

8.3 Building Name Embeddings

8.3.1 Methodology

In our approach, each name part (first or last name) is embedded into high
dimensional space as a high dimensional vector using word2vec [167]. Our
hypothesis is that people have a tendency to contact people of the
same ethnicity and gender. Consequently, when using the contact lists of
millions of users as a text corpus, the resulting embedding of names would
capture this tendency by placing names of the same gender and ethnicity
close-by in the high-dimensional space.

8.3.2 Data Sources and Preparation

Datasets employed in our work are:

e (Contact Lists. This set of data, here after referred to as the contact lists,
is a proprietary sample of recent and/or frequent contacts of 2 million
distinct email users of a major Internet company. To preserve privacy,
the data does not contain the owners of the contact lists.

e Census 1990. The Census 1990 dataset [168] is a public dataset from
US Census website. It records the frequently occurring surnames from
US Census 1990. This dataset contains 4,725 popular female names and
1,219 popular male names.

e Census 2000. The Census 2000 dataset [169] is another public dataset
from US Census website. It contains the frequently occurring 151,672
surnames from US Census 2000. Associated with each name is a dis-
tribution over six categories of races. The races are: White, Black,
Asian/Pacific Islander (API), American Indian/Alaskan Native (ATAN),
Two or more races (2PRACE), and Hispanics. In this study we refer to
the races and ethnicity interchangeably.

Data Preparation. The contact lists include substantial noise in the
name fields [170]. To improve the quality and integrity of the contact list
data, we apply the following data cleaning processes to the original data fol-
lowing the guidance of US Census 2000 demographic report [171]: (1) Remove
non-English characters; (2) Remove known special appellations, such as “Dr”,
“Mr”, “MD”, “JR”, “I”, “II” and “III”; (3) Remove middle names. First

111

name is the first part of a full name, and last name is the last part of it. For
example, for name “Margarita M. Alvarez”, only “Margarita” and “Alvarez”
will be kept. After data cleaning and removing lists containing no names, 92%
of the lists remains.

8.3.3 Word2vec Embeddings

The word2vec software [172] is an efficient tool to learn the distributed rep-
resentation of words for large text corpus. It comes with two models: the
Continuous Bag-of-Words model (CBOW) and the Skip-Gram (SG) model.
The CBOW model predicts the current word based on the context while the
Skip-Gram model does the inverse and maximizes classification of a word based
on another word in the same context [163].

We start our analysis by using the cleaned contact lists and the word2vec
software [172]. Each contact list is treated as a sentence, and together they
form a text corpus. Unless otherwise stated, all results in the study are based
on the CBOW model with the default word2vec parameter settings (see Sec-
tion 8.3.4 for comparison of different models). The output of word2vec is a
dense matrix of dimension 517,539 x 100, with each unique name represented
as a row of the matrix.

Embedding Visualization. To understand the landscape of the name
embeddings, we visualize the names as a 2D map. We used the stochastic
neighborhood embedding [173] to reduce the original 100-dimensional embed-
ding to 2D. We assign each name to a cluster using gender/ethnicity ground
truth, and created the maps using gvmap [174].

Figure 8.1 (left) illustrates the landscape of first names. This visualization
establishes that the embedding places names of the same gender close-by. Us-
ing Census data, we color male names orange, female names pink, and names
with unknown gender gray. Overall names of the same gender form mostly
contiguous regions, indicating that the embedding correctly capture gender
information by placing names of the same gender close-by. Figure 8.1 (right)
is an inset showing a region along the male/female border. We can see that
“Ollie”, which is considered a predominantly female name [175] per Census
data (2:1 ratio of female/male instances), is placed in the male region, close
to the male/female border.

we found that “Ollie” is more often a male name, and used as a nickname
for “Oliver” or “Olivia”. Hence our embedding is correct in placing it near
the border. The embedding also correctly placed “Imani” and “Darian”, two
names not labelled by the Census data, near the border, but in the female/male
regions, respectively. Per [175], “Imani” is a African name of Arabic origin,
and can be both female and male, mainly female; “Darian” can also be female

112

and male, but mainly male, and is a variant of “Daren” and “Darien”, among
others.

Fig. 8.2 (left) presents a map of the top 5000 last-names. We color a name
according to the dominant racial classification from the Census data. The top
5000 names contain four races: White (pink), African-American (orange), His-
panic (yellow), and Asian (green). Names without a dominant race are colored
gray. The three cutouts in Fig. 8.2 highlight the homogeneity of regions by cul-
tural group. The embedding clearly places White, Hispanic and Asian in large
contiguous regions. African-American names are more dispersed. Interest-
ingly, there are two distinct Asian regions in the map. Fig. 8.3 presents insets
for these two regions, revealing that one cluster consists of Chinese names and
the other Indian names. Overall, Fig. 8.1 and Fig. 8.2 show that our name
embeddings capture gender and ethnicity information well.

> SONG IYER NAYAK ok I
oy JIANG
ENG i SON| BHATIA
KANG YANG GUO KAPOOR
PAREKH
MIN FU ZHU SHETH ARORA
G TSAI SHEN FENG zyang ARIKH KHANNA CHOPI
GOEL
YU HU AGRAWAL
HSU wy CHEN
" o WANG . SAXENA AGGARWAL
HN L AGARWAL
U [MALHOTRA
Y
[CHIANG | AN GUPTA JAIN BANSAL
SULT?
3UONG CHou Lu SETHI MISHRA
JHA SHAIKH ANSARI
HUYNH e . B
NGUYEN TIWARI SRIVASTAVA
RN piam " pine DOAN SYED sDDiQui ABBAS
KHAN
J Vo HOANG v e
RAJA BAIG SHEIKH
CHOW MAI LE
NG - w0 RANA MALIK BASHR akHTAR
LAM
USMAN T AKI
LEUNG LUl KWOK cHI MAHMOOD
YIP SALEEM
CHEUNG TAM TSANG UF BUTT
YEUNG FAROOQ

Figure 8.3: The two distinct Asian clusters. Left: Chinese/South Asian names
(in Fig. 8.2). Right: Indian names (Fig. 8.2).

8.3.4 Evaluation of Different Word2vec Embeddings

The embedding from word2vec is influenced by two factors: (1) the input text,
and (2) the word2vec parameter settings. To understand how these two factors

113

Variation Popularity Gender Ethnicity (NN(1))
NN(1) | NN(10) | P(W|W) | P(B|B) | P(A|A) | P(H|H)
CBOW joint | 0.6434(0.0007) 0.9092 | 0.9360 | 0.9362 0.5939 | 0.7626 | 0.7543

SG joint 0.6747(0.0002) | 0.8844 | 0.9274 | 0.9461 0.4561 | 0.7208 | 0.7543
CBOW sep 0.6675(0.0003) | 0.9162 | 0.9350 0.9299 0.4437 | 0.7167 | 0.6710
SG sep 0.5776(0.0001) | 0.8844 | 0.9205 0.9217 0.3451 | 0.6797 | 0.6971

Table 8.2: Evaluation of different embedding variants. The bold text means
the best value of each column.

influence the embedding, we evaluate the following variants of the word2vec
embeddings:

e Set the word2vec model to be CBOW or SG.

e Generating joint embeddings of first names and last names using the
contact lists as they are (“CBOW joint” or “SG joint”).

e Generating embedding for first names and last names separately by in-
cluding only first/last names in the contact lists (“CBOW sep” or “SG

sep”).

Metrics. To evaluate the quality of the embeddings with regard to look-
alike names, we propose three metrics to measure gender, ethnicity and pop-
ularity similarities between real and look-alike names.

o Gender Similarity. The gender similarity is measured by precision at k,
defined as the percentage of the k-nearest neighbors of a name having
the same gender as the name itself.

e FEthnicity Similarity. The ethnicity similarity is calculated by precision at
1. For example, the precision for White names is defined as P(W|W) =
P(1st NN is White|original name is White).

e Popularity Similarity. The popularity similarity is computed by the
Jensen-Shannon Divergence (JSD) between name frequency distribu-
tion in real name population and name frequency distribution in nearest
neighbors population (which describes how frequent a name appears in
other name’s nearest neighbor). To be specific, we sample 10k names
randomly from the name list, with sampling probability proportional to
real name frequency distribution. Then we record ten nearest neighbors
(NN) for each of them and build the nearest neighbors population. We
repeat this process 20 times and report the mean and deviation of JSD.

Results. We present the evaluation results in Table 8.2. As we expected,
the joint variants generally perform best. However the differences between

114

the embedding variants are seen as relatively minor. In addition, the CBOW
model generally outperformed the SG model for the majority of the nearest
neighbor tests. Given these observations, in this study by default we use
“CBOW joint” Note that while P(B|B) (35%-59%) is generally much lower
than P(W|W) (92%-94%), considering that a randomly picked name from the
contact list has a probability of 74% of being White but only a probability of
3% of being Black, P(B|B) is actually significantly above the probability of a
random name being black.

8.4 Properties of Name Embeddings

Earlier, in Fig. 8.1 and Fig. 8.2, we have provided visual evidence that the
embedding is coherent, in the sense that it places names of similar gender
and ethnicity close-by. In Section 8.3.4 we have also seen aggregate numerical
evidence of this coherence. In this section we evaluate the coherence of the
name embedding quantitatively and in more detail.

8.4.1 Gender Coherence and Analysis

We first examine the gender coherence of a subset of first names and their
ten nearest neighbors. This subset of first names is the intersection between
contact lists and Census 1990. It contains 1,146 unique male first names and
4,009 unique female first names. All names in the subset are ranked by their
popularity as measured in the Census 1990 data. Table 8.3 shows the gender
coherence results, measured by precision at k, as a function of the population
of the names, and k, the number of nearest neighbors. For example, the cell
at {< 20%, 2} of Table 8.3 (left) reads 97. It means that for the top 20%
most popular names, 97% of their nearest 2-neighbors have the same gender
as them.

To save space, we only report the first two significant digits of each precision
(e.g., 0.9742 becomes 97). In addition we color the cells of the tables based
on the values. Within each table, we use warm colors for high values and cold
color for low values. This gives us heat-maps through which it is easier to see
the trend of how the precision varies with popularity of the first name, and
the number of neighbors.

From Table 8.3, we observe that our proposed name embedding scheme
shows strong gender coherence, especially for popular names. As we can see
from the tables, the percentage of neighbors that have same gender as the
original first name is very high for the top 30% most popular names comparing
to a randomly assigned name (50%). On the other hand, the percentage

115

Top% 1 234567 8910Top%h12345678910
< 10% 10099989898 98 98 98 98 98 < 10% 9797 97 96 95 95 95 95 95 95
< 20% 99 9796 96 959595959595 < 20% 9191 91 90 89 89 89 89 88 88
< 30% 96 9594 93939293929291 < 30% 8584 84 84 838382828281
< 40% 93 939190908989898888 < 40% 807979787877 77777676
< 50% 89 898685858484848383 < 50% 75747473737272727171
< 60% 86 868483828282818180 < 60% 6969686867 6766666666
< 70% 82 81797978 7777767676 < 70% 66 65 66 65 64 64 63 63 63 63
< 80% 79 78767574 7474737372 < 80% 62616161 60605959 59

< 90% 76 7573737271 7171 < 90%
All |73 72 All

Table 8.3: Gender coherence of the name embedding for males (left) and
females (right), as measured by the percentage of k-neighbors being male or
female.

decreases when unpopular names are included, and also decreasing as the
number of neighbors increases.

8.4.2 Ethnicity Coherence and Analysis

We evaluate the ethnicity coherence by examining the ethnicity of a last name
and its ten nearest neighbors. The evaluation is based on the intersected last
names between Census 2000 and the contact list. The coherence values are
computed by the percentage of nearest neighbors that have same ethnicity as a
query name itself. To better understand the coherence trend, we use the same
strategy as with gender coherence analysis, and examine the precision as a
function of the popularity of the names, and the size of nearest neighbors. The
results are presented in Table 8.4. In general, the top neighbors of a popular
name tend to have a high probability of being in the same ethnicity group.
The coherence for an ethnic group correlates positively with the popularity
of the group in the contact lists. The coherence for AIAN and 2PRACE are
poor, because they only account for 0.1% and 0.05% of the last names in the
contact lists. Thus there is too little data to get the embedding correctly.

8.4.3 Name Popularity Analysis

We define two types of frequencies. The real name frequency is the frequency
of names in the Contact list. The replacement usage frequency is the frequency
of a name in the replacement name population. To measure the popularity
preserving of word embedding, we calculate the real name frequency of a name

116

(R), the average real name frequency of its replacement names (ten nearest
neighbors) (A), and its replacement usage frequency (U).

Two measurements, Pearson’s correlation coefficient (PCC) and Spear-
man’s rank correlation coefficient (SCC), are used to measure how well the
popularity is preserved. The results are shown in Table 8.5. For example,
R vs U means the correlation between the real name frequency and the re-
placement usage frequency. Overall we can see that the correlation between
the real name frequency R and the replacement usage frequency U is higher
than that for the real name frequency R and its neighbors’ real name frequency
A. This indicates that a popular name is very likely to appear in among the
nearest neighbors of other names, even though its nearest neighbors are not
necessarily popular names. A visualization of the relationship between the
frequency of real names and replacements are given in the Appndix.

8.5 Cultural Coherence Mining

The visualizations of Figures 8.1 and 8.2, and quantitative analysis in the pre-
vious section have confirmed that our name embedding is able to capture both
gender and ethnicity coherence information. Since the embedding is gener-
ated in a completely unsupervised manner by applying word2vec to millions
email contact lists, it is surprising that the embedding can capture gender
and ethnicity so well. Our hypothesis is that in aggregate, users exhibit a
preference to communicate with people of the same ethnicity and
gender. In this section we attempt to verify this hypothesis.

8.5.1 Coherence in Gender Distribution

One important aspect of a name is its associated gender. To identify a name’s
gender, the first name is always preferred than last name in demographic
studies [176]. Here, we follow this popular rule and use the first name to
identify the gender of a given full name. The gender of a name could be male,
female or unknown. The “unknown” names could be human names with no
known ground truth gender, or non-human names, for example, “Microsoft”
or “Amazon”. To avoid the bias of any specific machine learning classifiers,
we rely on dictionary look-up method to identify the gender of a name using
the Census 1990 data.

To start with, we look at the gender distribution of the contact lists as a
function of the length of the contact list. Fig. 8.4 shows the average percentage
of males as a function of the length of the contact lists (red dot curve), as well
as as a function of the length of gender-identifiable names in the lists(blue

117

dot curve). It is seen that the longer the list, the less percentage of males
it contains. We conjecture that the female users tend to have more contacts
than male users. Second, we want to know the difference between the observed

«10? Statistics

Expectation
0.54 P 15

=@=number of identified names
m=@mlength of contact list

0.52

0.5

Counts

0.48

Expectation

0.46 |

0.44

=@mnumber of identified names
m=@mlength of contact list

0.42 s s ‘ : : : :
5 10 15 20 5 10 15 20

Size Size
Figure 8.4: Left: the expectation of male name percentage as a function of
the size of identified names (blue) and contact list lengths (red). Right: count
of contact lists as a function of the size of gender identified names (blue) and
contact list lengths (red).

contact lists and a randomly generated contact list. Our hypothesis is that
users’ contact lists exhibit a bias towards either male domination, or female
domination. To test this hypothesis, we look at the frequency distribution of
percentage of males in our mailing list, and compare with the null hypothesis.
In Fig. 8.5 (left), we divide contact lists by a threshold based on the minimum

number 7" of identifiable genders in the list. E.g., T' = 5 means those contact
lists with at least five gender-identifiable names. The distributions of the ratio
of identifiable males in the contact lists with 7' = 5 and 10 are seen as the

two lower curves. Clearly, the majority of the contact list has around 50%
males. However, looking at these distribution along would not tell us whether
the distributions have any bias. For this purpose, we need to compare them
with the null hypothesis.

We generate the null distribution by assigning the gender of a name ran-
domly following the gender distribution of the contact list. As a result, for a
contact list with the number of identified names s equals to i and a probability
of male of p,,, the probability that this list has j males is the binomial:

p(m = jls =) = CIpl,(1 — pn)".

Since the number of identified names varies for different contact lists, the

118

probability of having a ratio of = € [0, 1] male in the contact lists is:

_ Z?il Zk:i*x is integer p(S = Z)p(m = k|S = Z)

Zfi1 2;:1 p(s =1i)p(m = jls = i)

Here p(s = i) is the percentage of contact lists having exactly ¢ gender iden-
tifiable names. Fig. 8.5 (left) shows that the distributions based on the null
hypothesis (the two higher curves) are spikier, with around 30% of the contact
lists having 50% of males, compared with the observed 15%. Fig. 8.5 (right)
shows the deviation of the observed distribution from the null hypothesis. It
shows a clear bimodal pattern, confirming our hypothesis that contact lists on
average exhibit a bias towards either male domination, or female domination,
especially the latter.

To further verify the gender bias in observed contact lists, we model the
observed number of males in all contact lists as a Binomial mixture model.
Basically we assume that number of males in a contact list that we observe
is generated by one of two separate Binomial distributions with different pa-
rameters, one representing female users and the other representing male users.
We run Expectation-Maximization algorithm to find the best set of model
parameters that explains the observed data most accurately. Here we only
consider contact lists with more than 5 identifiable genders. After the EM
algorithm converges, we generate synthetic data from the model and plot it
alongside with the observed data in Figure 8.5. We observe that model fits
the observed data quite well. Also the parameters of the fitted model suggest
a strong gender-bias in contact lists, such that the probability of a contact
in a male user’s contact lists being male is 0.61, whereas the probability of a
contact in a female user’s contact lists being male is 0.27. The results also
suggest that 47% of the observed contact lists belong to male users and 53%
belongs to female users.

p()

(8.1)

8.5.2 Coherence in Ethnicity Distribution

Another important aspect of a name is its ethnicity. While first names often
reveal the gender, last names give a strong signal about ethnicity. In this sub-
section, we study the ethnicity distribution of the contact lists. We use Census
2000 data set as ground truth and perform a similar look-up classification as
we did for the gender analysis.

Just like the case for gender, we conjecture that users’ contact lists on
average exhibit a bias towards one ethnicity. To test this hypothesis, we look at
the frequency distribution of percentage of a particular ethnicity in our mailing

119

Gender distribution. R-Random,G-Generative

o
©
o
"
=)

15 Difference between contact list and Random contact list

=125 =e=1=5

=98 = T=5(R) —Pe=T=10
T=10 L

* =@ =T=10(R)

. i T=5(G)
*e g = T=10(G)

=)
w
»

o

)

a
=4
=)
a

o
[

:
2o

Freqeuncy (normalized)
o o
1= e -
(3] - (3]
L2
2, {
.0
e
%,
p)
o
®
<
' L2
/é“
*
%
* &
' f
bt/
i
Frequency difference
S . S
o 4 1=}
3] - (3]

s
o
N

o

.
i

0 01 02 03 04 05 06 07 08 09 1 0.2 0.4 0.6 0.8 1
#M/(#M+#F) #M/(#M+#F)

o

Figure 8.5: Left: the distribution of user’s gender in contact lists data. Distri-
butions with legend “R” are from binomial distribution with probability 0.5.
Distributions with legend “G” are from binomial mixture model with param-
eters inferred using EM algorithm. Other distributions are from observation
in the contact lists. Right: deviation from the null hypothesis.

list, and compare with the null hypothesis. The null hypothesis is constructed
just like in the case for genders. Take the Hispanic ethnicity as an example.
They constitute 14.75% of the names in the contact lists, so we set p,,, = 0.1475
in (8.1). This allow us to plot the distribution for the null hypothesis, and
compare with the observed Hispanic distribution. Fig. 8.6 shows the deviation
of the observed distribution from the null hypothesis for “Black”, “API” and
“Hispanics” ethnic groups. It confirms that the contact lists have a tendency
of containing lists that have higher than expected percentage of one of these
ethnic groups, even though the bias is not quite as pronounced as in the case
of genders.

8.6 Applications

Beyond the obvious applications of name embeddings as features for training
classifiers and other models, we have employed name embeddings in two dif-

ferent security/privacy applications of generating realistic names respecting
cultural constraints.

8.6.1 Replacement Name Generation

In replacement name generation, for a given a particular name (f,[) we seek
to construct a look-alike name (f’,1’) with similar properties and veracity.
This task comes from a computer security application at a large Internet

120

Distribution deviation

Deviation

mgpmBlack
-0.015 sl AP
Hispanics

0:2 0:4 0:6 0:8 ‘i

Percentage of ethnic group
Figure 8.6: Deviation between observed distribution of percentage of names
in ethnic groups “Black”, “API” and “Hispanics”, and the distribution from
the null hypothesis, showing a bimodal pattern.

company. How might an email user who lost their password be able to convince
the account provider of their identity as part of account recovery process?
We reasoned that the genuine account holder should be able to distinguish
the actual email contacts they have corresponded with from a background of
imitation names. But this is only effective when the background names are
culturally indistinguishable from the contacts, a property which did not hold
under naive random name generation methods, as shown in Figure 8.7.

We propose to generated names preserve ethnic and cultural properties of
the real contacts that they replace (middle), by finding replacement names
among the nearest neighbors of the real contacts. For example “Amanda”
is close to “Amy”, and “Hsu” is close to “Chiang”. With this scheme, the
guessing task for attacker remains hard, because the imitation names look
very similar to the real contacts.

8.6.2 De Novo Name Generation

A related class of applications concerns generating large sets of plausible names
without starting templates, to serve as demonstration identities in information
processing systems.

A synthetic name generation algorithm should have the following proper-
ties:

e Scale — The algorithm should be able to generate an arbitrarily large
number of names, without high levels of repetition.

o Respect population-level frequency-of-use statistics — First name and last
name tokens should be generated as per names in the target population.

121

Real Contacts Proposed Challenge Naive Challenge

Angela Chiang Amanda Hsu John Sander
Paresh Singh ~ Nirav Sharma Steve Pignootti
Charles Wan Charles Wan Charles Wan
Yuda Lin Joko Yu Jeftf Guibeaux
Lin Wong Hua Li Sam Khilkevich
Tony Kuang David Feng Mary Lopez
Hua Yim Jie Fung Ron Clemens

Figure 8.7: A security challenge question: “pick someone you contacted among
the followings”. Left: the contact list of a hypothetical user wendy_wong®@.
Middle: a replacement list generated using the technique proposed in this
study (retaining one real contact Charles Wan). Right: a naively generated
random replacement list. It is very easy to pick out the only Asian name
“Charles Wan” from Naive Challenge.

o Culturally-appropriate first/last-name linkage — As we have seen, name

token usage is not independent, but conditionally linked.

e Privacy preservation — No linkage between real and synthetic identities
is permitted.

We propose the following approach. We construct a batch of m names
simultaneously, where m = 100 is an appropriate value. We randomly sample
m first and last name components as per the population distribution, here
generated according to the U.S. Census distribution. We use the embedding-
similarity between name components to weigh a complete m x m bipartite
graph. By computing a maximum weight bipartite matching, we get m syn-
thetic names with linkage informed by the geometry of the name embedding.
The detail algorithm of de novo names generation can be described as follow-
ing:

Table 8.6 presents a comparison of the first 25 synthetic men and women
names produced by our methods versus http://listofrandomnames.com. We
conducted a study by searching for each of the full names in Google and
checking how many results are returned. Our rationale is that a plausible
name should appear more often on the web than an implausible one. In the
table, we marked in bold names that has at least 100 matches in Google
search. In addition we use red color to show names that have no matchs at
all. Clearly our name generator performs much better, with 47 bold names vs

122

http://listofrandomnames.com

Algorithm 17: De novo names generation algorithm.
Input: A set of full names: S = {(f1,l), (fo,l2), -, (fu,ln)} = (F, L);
Name embedding vectors; Number of required look-like names:
K; Name batch size: m; Name popularity threshold: T'.
Output: Number K look-alike full names: U.
1 Calculate the frequency of unique first names in F' and unique last
names in L.
2 Build the cumulative distribution function(CDF') of top T first names
and last names.
3 for i+ 1 to%do
4 Randomly select m first names from F' following the CDF of first

names.

5 Randomly select m last names from L following the CDF of last
names.

6 Build a bipartite graph of first names vs. last names, with edge

weight the cosine similarity per word2vec.

7 Find the best matches through Maximum weighted bipartite
matching algorithm.

8 Add the resulted best matching into U.

9 end

10 return U.

18 for http://listofrandomnames. com.

8.7 Chapter Summary

In this chapter, we propose a new technique for generating look-alike names
through distributed name embeddings. By training on millions of email contact
lists, our embeddings establish gender and cultural locality among names.
The embeddings make possible construction of replacement aliases for any
given name that preserve gender and cultural identity. Through large-scale
analysis of contact lists, we establish that there is a greater than expected
concentration of names of the same gender and race for all major groupings
under study. Using the techniques developed in this study, we have constructed
a collection of synthetic names, which will be released as an open resource upon
the publication of this manuscript.

123

http://listofrandomnames.com

Top% 12345678 910Top%1 2345678910
<10% 969696 9696 96 96 96 9696 <10% 6259 57 55 54
<20% 96 96 96 96 96 96 96 96 96 96 <20% 65 63 60 59 58 58 57 57 56 56
<30% 96 96 96 96 96 96 96 96 96 96 <30% 63 62 61 60 59 59 58 58 58 57
<40% 96 96 96 96 96 96 96 96 96 96 <40% 63 62 61 60 59 59 59 59 59 58
<50% 959595959595 9595 9595 <50% 62 61 60 60 59 59 58 58 58 58
<60% 959595959595 95959595 <60% 61 61 606059 59 58 58 58 58
<70% 9595959595 9595959595 <70% 61 61 6059 59 59 58 58 58 58
<80% 9494949494 9494949494 <80% 606059 59 58 58 58 58 57 57
<90% <90% 6059 5959 58 58 58 5757 57
_ All 5959595958 58 58 57 57 57
White Black
Top% 12345678 910Top%1 2345678910
<10% 90 <10% 191922222221202019 18
<20% 89898989898989898989 <20% 171920191817 1616 1514
<30% 86 85 86 86 86 86 86 86 86 86 <30% 15181817161514141313
<40% 83838484848484848484 <40% 131515141413121211 10
<50% 81818181828282828181 <50% 1213131111111010 9 9
<60% 80808080808080808080 <60% 111211101010 9 9
<70% 7979797979797979 <70% 10111010 9 9

<80% <80% 9 10 9
<90%
All
API ATAN
Top%12345678910Top%1 2345678910
<10% 54 A7474545 <10% 97979796 96 96 96 96 95 95

<20% 545049494949 51515050 <20% 9594 94 94 94 94 93 93 93 93
<30% 56 53525151 5152525050 <30% 9191919091 9090 90 90 90
<40% 5451 5252525252525051 <40% 89 89 88 88 88 88 88 88 88 88
<50% .52 54 5554 5453545253 <50% 86 86 86 86 86 86 86 86 85 85
<60% 5851 50535251 51515051 <60% 83 83 83 83 83 83 83 82 82 82
<70% 57525354535252525152 <70% 81808181 8181 81808080
<80% 5651 5152515051515151 <80%
<90% 5349 5050504949504949 <90%
All 51484949484748484848 All
2PRACE Hispanic

Table 8.4: Percentage of k-nearest (k = 1,2,...,10) neighbors of a name
that has the same ethnicity as itself, when restricting the name in the top p-
percent (p = 10,20, ...,90, All) of a8, API: Asian/Pacific Islander. ATAN:
American Indian/Alaska Native. 2PRace: two or more races.

pPCC SCC
RvsA| RvsU | RvsA| RvsU
First names | 0.5813 | 0.7795 | 0.5170 | 0.5402
Last names | 0.2260 | 0.4454 | 0.3444 | 0.3916

Table 8.5: Correlation of real names and replacement names frequencies.

listofrandomnames.com Embedding-based de novo generation
Male Female Male Female
Keith Albro Sibyl Bjork Reginald Bouldin Ethel Agnew
Sonny Bordner Amie Corrao Max Bowling Mabel Beaudoin
Stanley Brummond | Joselyn Custard Dale Depriest Jolanda Boring
Reuben Carlucci Marvella Deese Richard Diefenderfer Lori Butz
Darrell Chatmon Holly Delman Michael Doutt Diana Chao
Jeffry Egnor Kayleigh Derr Randall Drain Cynthia Clay
Russel Foye Eugenia Fahnestock | Anthony Hattabaugh Karin Combes
Hank Fries Clemmie Formica Henry Humbert Krista Emmons
Patrick Gazaway Gigi Fredericksen Jeremy Jacobsen Rebecca Gagnon
Roy Gilman Marylyn Gersten Jeffrey Jimenez Betty Grant
Federico Gulley |Elisabeth Harkness Brian Kerns Ruth Griffin
Adalberto Hakes Almeda Ivy Ronald King Nancy Lantz
Sylvester Kammer Dot Klingbeil Elton Kolling Joann Larsen
Tanner Lundblad Shay Krom Robert Kuhls Deborah Lovell
Jarod Man Tessie Kush Fred Lawyer Carla Mccourt
Lee Mcclintock | Providencia Laughter | Raymond Middleton | Caroline Mclaney
Elvin Mcwhirt Merlyn Lovings Andres Morales Denise Murders
Harry Nino Milda Marcos John Morales Mary Navarro
Preston Pickle Sierra Olivieri Alvin Morrison Margarita Reyes
Edgar Ramer Pennie Pasquale Patrick Mulvey Brenda Rock
Rafael Rasheed Mallory Peralta Victor Rahn Selina Rubin
Earnest Robert Manda Stetz Nick Shick Opal Sinkfield
Ryan Seiber Lissette Torrey Howard Siegel Denise Stephens
Kraig Tullos Zelda Vanderburg Daniel Spady Doretha Thurmond
Howard Welk Hee Weast Patricia Vargas Serina Webb

Table 8.6: Comparison of our de novo generated synthetic names and ran-
dom names from website http://listofrandomnames.com. Bold names are

mentioned over 100 times on the web, while red colored names appear in zero
documents.

125

http://listofrandomnames.com

Chapter 9

Conclusion and Ongoing Works

This chapter summarizes our finished works and the future research directions.
Our works focus on seeking sparse graph representation for real-world data.
The ideal goal is to find a parameter-free method which can model the struc-
ture of data accurately and succinctly. Our algorithms are demonstrated to be
efficient and scalable. They will have many potential applications in machine
learning and data mining research area.

9.1 Contribution Summary

Our research works can be divided into three parts: (1) sparse graph represen-
tation, (2) graph structure analysis, and (3) applications. For the first part,
we present three novel sparse graph representation algorithms. The proposed
methods have competitive performance over original £, graph and with lower
construction cost. For the second part, we discuss the importance of dense
subgraph when analyzing the structure of graph. This analysis is the key to
understand the information presented in the data. For the last part, we suc-
cessfully apply our research works to the application of unsupervised feature
selection. Our proposed algorithms have great potential in semi-unsupervised
learning research and graph data mining research. To be specific, our contri-
butions include:

e We present an efficient locality preserving sparse graph construction al-
gorithm to improve the spectral clustering performance.

e We demonstrate a structure preserving algorithm to generate sparse
graph by using diffusion distance to capture the manifold structure of
data, and compare the performance with Euclidean distance as metric.

126

We introduce a greedy algorithm based on ranked dictionary to solve the
scalable issue of constructing £, graph.

We propose a graph-based algorithm to solve the multi-source data in-
tegration problem in computational biology research. Our proposed
method use the idea of semi-supervised learning to predict the labels
of unlabeled data samples.

We develop the robustness local subgraph to differentiate subgraphs with
different sizes topologies. A greedy approach and heuristic local search
algorithm are proposed to find all those robustness local subgraphs.

We propose sparse feature graph to remove the redundant features for
high dimensional data and reduce the dimensionality without calculat-
ing the pairwise distance between samples. This is very useful for high
dimensional data as the quality of nearest neighbors becomes low when

the size of dimensionality goes high.

The three novel sparse graph representation methods can be summarized

as following:

Name Distance metric L1 solver Summary

LOP-£, Euclidean Non-greedy | good for #samples < 1000
SA-Lq Diffusion Non-greedy | good for #samples < 1000
Greedy-L; | Euclidean/Diffusion Greedy good for #samples > 1000

Table 9.1: Summary of different sparse graph representation methods.

We also summarize the spectral clustering performance difference of them
in the Table 9.3. For the results of LOP-L; graph and SA-£; graph in this
table, we remove the non-negative constraint of sparse representation coeffi-
cient. From the results, we see that the Greedy-£; with Euclidean distance
has general better performance.

9.2 On-going Works

There are still many immediate and valuable research topics that can be in-
cluded into our current works. The following are several potential subjects
that can be directly extended from the works we have done so far.

127

oouruLIofIod 989 o) oW sonfeA plog -uosrreduoo soueurioped HOVY €6 9[qe],

G0GE'0 | 2SS0 | 06TG°0 | €F0L°0 | ISTL'0 | 8F€9°0 | £689°0 | 889°0 | 989°0 |6T8L°0 | #20L°0 | 1290 | 9LIG0 | oSeu]
G09€°0 | TS0 | ¥99€°0 | 60F°0 | €FEF 0 | 660 | 8L 0 | LETFO | 61070 | €670 | 6070 |664F°0 | 61070 | O[IYA
9L87°0 | 97LE0 | 08FF°0 | 9T0S°0 | €68F°0 | FFGS0 | T69F°0 |LLTS 0 | G9EF0 | LETFO | 61670 | 615S0 | 78S 0 | weaqiog
L8TS'0 | €ISF0 | 92970 | 9PEF0 | €ESF0 | 6L5F0 | 2STH0 | €8SF0 | SIEE0 | 665F0 | €L9F0 | GSTH0 | GPIE0 | sserD
9658°0 | G98L°0 | 6868°0 | 1SG6°0 [6TL6°0 |6TL6°0 | 80L8°0 | STES'0 | 9288°0 | 80L8°0 | 8EF6'0 | 965870 | 888F'0 | PUIM
LILF0 | 906770 | 82SF0 | €¥6S°0 | TI8F°0 |8699°0 | GSLS0 | LL6S°0 | TISF0 | €88S°0 G0 | 90670 | S¥TF 0 L4
79°0 | £659°0 |0022°0 | 89°0 |00TL°0 | €690 | 89°0 | L9080 | €ETL0 | L9890 | €6L9°0 80| 890 SLI|
INE=Y | ING=Y | INT=Y | INE=M [ING=M |INT= |INE=M |INE=3 | INT= |INE=3 | ING= | INT=3]
(uotsngi(r) 'g-Apoery | (ueoprpny) 'F-ApsarH '7-VS '7-dO1 7 ereq
ooureurIojrad 9s9q oY) weawr senfeA prog ‘uosrreduroo soueurtojad NN :Z°6 ORI,
GGTE'0 | €870 | 998F°0 | 6799°0 | £299°0 | 1T8G°0 | L8970 | FI69°0 | GL8S0 | 8169°0 [F90L°0 | 8LT90 | 9gF0 | oSeur
FPCI°0 | SE0T°0 | SEPT°0 | L902°0 [TETZ'0 | TICT'0 | G180 | GFPI°0 | €160°0 | 9061°0 | L6070 | 69T°0 | EPLT°0 | 9PIYLA
TEPS0 | €6VC°0 | 88470 | GLL9°0 | €€89°0 [6169°0 | 80890 | 1629°0 | €19°0 | 6€19°0 | 95970 | LFF9'0 | 15970 | weaqiog
816°0 | 950€°0 | T662°0 | 680€°0 [889€°0 | 6952°0 | FILZ'0 | 128270 | G080 | 108€°0 | FIFE0 | 6280 | L8TE0 | SSB[D
€609°0 | 16270 | G669°0 | 9958°0 [3L06°0 | €680 | £6€9°0 | 926970 | LETL'0 | ¥S€9°0 | GT6L°0 | GFFO°0 | L09E0 | OUIM
688€°0 | €L07°0 | L6170 | ¥0S'0 | LIGH 0 |€LFS°0 | TTFF0 | GE0S°0 | G00F0 | 66970 | S0TH0 | 6¥5F0 | ST9€0 kS|
P97°0 | 939%°0 | 901G°0 | 2070 | €69%7°0 | S68°0 | LT8G0 [€0T9°0 | L8GH 0 | £56S°0 | 6170 | 68670 | ST9E0 SLI|
INE=Y | ING=Y | INT=Y | INE=M |ING=M | INT=M | INE=M |ING=3 | INT=3 |INE=3 | ING=3 | INT=3]
(uorsngi) 'y-Apeory | (weeprpny) 'y-£pesrH '7-VS '7-dO1 'y ere(

128

9.2.1 Subspace Learning with Sparse Graph

Similar to the graph construction process in Locally Linear Embedding (LLE),
the £, graph characterizes the neighborhood reconstruction relationship. In
LLE, the graph is constructed by reconstructing each data sample with its
k nearest neighbors of the samples within the e-ball based on the ¢? norm.
LLE and its linear extension, called neighborhood preserving embedding
(NPE) [177], both rely on the global graph parameter (k or €). Following the
idea of NPE algorithm, £, graph can be used to develop a subspace learning
algorithm as follows.

The general purpose of subspace learning is to search for a transfor-
mation matrix P € R™4(usually d < m) for transforming the original
high-dimensional data sample into another low-dimensional one. £; graph
uncovers the underlying sparse reconstruction relationship of each data
sample, and it is desirable to preserve these reconstruction relationships in
the dimensionality reduced feature space. Note that in the dimension reduced
feature space, the reconstruction capability is measure by ¢, norm instead
of /1 norm for computational efficiency. Then the pursuit of transformation
matrix can be formulated as the following optimization problem:

N N
min Pz, — > W, PL|?, 9.1
s, S NPT = WP 91)
where W;; is determined by the constructed £; graph. This optimization
problem can be solved with generalized eigenvalue decomposition approach
as:

XMX " pi1—j = N XX Pt (9.2)

where M = (I —W)T(I —W), and py,41; is the eigenvector corresponding to
the jth largest eigenvalue \; as well as the (m + 1 — j)th column vector of the
matrix P. The derived transformation matrix is then used for dimensionality
reduction as:

y; = Pla; (9.3)

where y; is the corresponding low-dimensional representation of the sample
x; and finally the classification process is performed in this low-dimensional
feature space with reduced computational cost.

129

9.2.2 Semi-supervised Learning with Sparse Graph

L1 graph is proved to be robustness with data noises and empirically has
the potential to convey more discriminative information compared with
conventional graphs based on k-nearest neighbor or e-ball method [22].
These properties make £; graph a good candidate for propagating the label
information from labeled data to unlabeled data. Semi-supervised learning
recently has attracted much attention, and is widely used for both regression
and classification purposes. The main idea of semi-supervised learning is
to utilize unlabeled data to improve the classification and generalization
capability on the testing data. Commonly, the unlabeled data is used as an
extra regularization term to the objective function which is from traditional
supervised learning algorithms.

The unlabeled data are used to enlarge the vertex number of the £
graph, and further enhance the robustness of the graph. Finally, the £; graph
based on both labeled and unlabeled data is used to develop semi-supervised
learning algorithm. Here, we take marginal Fisher analysis(MFA) [178] as an
example for the supervised part in semi-supervised learning. Similar to the
philosophy [179], the objective for £; graph based semi-supervised learning is
defined as:

N N
VSe(P) + (1 —7) 21 1P — ZIWMPT%IP
i= j=

mgn S (P)) (9.4)

where v € (0, 1) is a threshold for balancing the supervised term and £; graph
regularization term, and the supervised part is defined as:

Se(P) =3 > P — Plal?, (9:5)
L jEN (D)
Sp(P) =32 > |IPTwi— PlalP, (9.6)

i (6,5) € Py ()

where S, indicates the intraclass compactness, which is represented as the sum
of distances between each point and its neighbors of the same class and V, ,; (1)
is the index set of the K nearest neighbors of the sample x; in the same class,
S, indicates the separability of different classes, which is characterized as the
sum of distances between the marginal points and their neighboring points
of different classes and Py, (1) is a set of data pairs that are the ko nearest
pairs among the set (i, 7),l; = [,1; # [, and W is the weight matrix of the £;
graph. The optimal solution can be obtained via the generalized eigenvalue

130

decomposition method, and the derived projection matrix P is then used for
dimensional reduction and consequent data classification.

9.2.3 Diffusion-based Learning

The algorithm introduced in last section 9.2.2 uses sparse graph as a penalty
graph to learn a projection matrix P. With this projection matrix, both
the labeled data and unlabeled data can be projected into a new space
where intraclass data samples are close to each other and interclass data
samples are far away. However, the most famous semi-supervised learning
algorithms are based on label diffusion (propagation) over the constructed
graph [180] [181] [182]. In this section, we introduce several popular and
important graph diffusion algorithms and tools.

Zhou’s Diffusions. Zhou et al. [180] propose the following diffusion
method:
F=(-aS), (9.7)

where [is the unit matrix, S is the graph Laplacian, and Y is the label
matrix which Y;; = 1 if node 7 has label j and Y; ; = 0 otherwise. F'is the
resulted labeled matrix.

Joachim’s Diffusion. Joachims [181] proposes a new diffusion equation

as:
F = (Dy +9)7Y, (9.8)

where Dy is the a diagonal matrix with the row-sums of Y on the diagonal.
S is the graph Laplacian.

ZGL’s diffusion. Zhu et al. [182] proposed the following diffusion way to
predict the label of j-th class.

minimize $y” Sy
1 if node 7 labeled in class j
subject to y; =< 0 if node 7 labeled in another class
free otherwise

(9.9)

Heat Diffusion. Heat diffusion is a diffusion process originate from physi-
cal science. It describes the way how heat flows from one place to other places.
The definition of heat diffusion is based on the heat equation:

O0H,

' — _AUH 1
8t MLl (9 0)

131

where A, is the Laplace-Beltrami operator over Riemannian manifold M,
and H, = e7*° is the heat kernel. S = D™'A where A is the adjacent matrix
of graph which describe (approximate) the geometry of manifold M. The
above definitions of heat equation and heat kernel over manifold are same
with definition over a general graph [183].

The heat kernel can be re-formulated as:

=3 e, (1)6,(5). (9.11)

where), is the p-th eigenvalue and ¢, is the p-th eigenvector of Laplacian S.
H,(i, j) calculates the amount of heat being transferred from ¢ to j in time ¢
given a unit heat source at 7 in the very beginning.

Heat Kernel Signature. Sun et al. [184] propose the heat kernel signa-
ture (HKS) with the following definition:

Hy (1) = Hy(i,1) Ze*Apt% : (9.12)

The physical meaning of HKS is the amount of heat ¢ keeps within itself at
time ¢. The heat diffusion process states that heat tends to diffuse slower at
point with sparse neighborhood and faster at point with denser neighbor hood.
Therefore, HKS can intuitively depict the local density of each point (or graph
node).

9.3 Future Research Directions

In long term, we expect to extend our sparse graph representation framework
to have the characteristic of “scalability”, and let it can handle very large-sized
data in real-world applications. Three potential directions will be streaming
algorithms [185], stretch [186] and hashing algorithms [187]. Improving the
graph quality from the theory perspective is also an challenging research in
data mining and machine learning research [188]. The sparse graph generated
by our algorithms can be seen as the skeleton of data’s structure, which means
we still have space to improve the graph connectivity. The quality of them
can be improved through edge connection manipulations following the require-
ments of specified mining or learning task as discussed in [7]. Around this,
dense subgraph mining technique is the key to let us know “where” should we
start the operation.

132

Bibliography

[1]

2]

Guangyao Zhou, Zhiwu Lu, and Yuxin Peng. Ll-graph construction
using structured sparsity. Neurocomputing, 120:441-452, 2013.

Yugiang Fang, Ruili Wang, Bin Dai, and Xindong Wu. Graph-based
learning via auto-grouped sparse regularization and kernelized extension.
IEEFE Transactions on Knowledge and Data Engineering,, 27(1):142—
154, 2015.

Yingzhen Yang, Zhangyang Wang, Jianchao Yang, Jiangping Wang,
Shiyu Chang, and Thomas S Huang. Data clustering by laplacian regu-
larized 11-graph. In Proceedings of the Twenty-Fighth AAAI Conference
on Artificial Intelligence, pages 3148-3149, 2014.

Shuchu Han, Hao Huang, Hong Qin, and Dantong Yu. Locality-
preserving 11-graph and its application in clustering. In Proceedings of
the 30th Annual ACM Symposium on Applied Computing, pages 813—
818. ACM, 2015.

Moses Charikar. Greedy approximation algorithms for finding dense
components in a graph. In APPROX, 2000.

Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis,
Francesco Gullo, and Maria A. Tsiarli. Denser than the densest sub-

graph: extracting optimal quasi-cliques with quality guarantees. In
KDD, pages 104-112. ACM, 2013.

David F Gleich and Michael W Mahoney. Using local spectral methods
to robustify graph-based learning algorithms. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 359-368. ACM, 2015.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and
computing, 17(4):395-416, 2007.

134

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Yu-Feng Li, Shao-Bo Wang, and Zhi-Hua Zhou. Graph quality judge-
ment: A large margin expedition. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, pages 1725-1731, 2016. URL
http://www.ijcai.org/Abstract/16/247.

Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S
Dhillon. Information-theoretic metric learning. In Proceedings of the 2th

international conference on Machine learning, pages 209-216. ACM,
2007.

Kilian Q Weinberger and Lawrence K Saul. Distance metric learning

for large margin nearest neighbor classification. Journal of Machine
Learning Research, 10(Feb):207-244, 2009.

Paramveer S Dhillon, Partha Pratim Talukdar, and Koby Crammer.
Inference driven metric learning (idml) for graph construction. 2010.

Fei Wang and Changshui Zhang. Label propagation through linear neigh-
borhoods. IEEE Transactions on Knowledge and Data Engineering, 20
(1):55-67, 2008.

Jun Wang, Tony Jebara, and Shih-Fu Chang. Graph transduction via
alternating minimization. In Proceedings of the 25th international con-
ference on Machine learning, pages 1144-1151. ACM, 2008.

Samuel I Daitch, Jonathan A Kelner, and Daniel A Spielman. Fitting
a graph to vector data. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 201-208. ACM, 2009.

Xiaojin Zhu. Semi-supervised learning literature survey. 2005.

Jean Cardinal, Sébastien Collette, and Stefan Langerman. Empty region
graphs. Computational geometry, 42(3):183-195, 2009.

Jerzy W Jaromczyk and Godfried T Toussaint. Relative neighborhood
graphs and their relatives. Proceedings of the IEEE, 80(9):1502-1517,
1992.

K Ruben Gabriel and Robert R Sokal. A new statistical approach to
geographic variation analysis. Systematic Biology, 18(3):259-278, 1969.

International Business Machines Corporation. Research Division,
DG Kirkpatrick, and JD Radke. A framework for computational mor-
phology. 1984.

135

http://www.ijcai.org/Abstract/16/247

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Prosenjit Bose, Sébastien Collette, Stefan Langerman, Anil Maheshwari,
Pat Morin, and Michiel Smid. Sigma-local graphs. Journal of discrete
algorithms, 8(1):15-23, 2010.

Bin Cheng, Jianchao Yang, Shuicheng Yan, Yun Fu, and Thomas S
Huang. Learning with 11-graph for image analysis. Image Processing,
IEEE Transactions on, 19(4):858-866, 2010.

Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological), pages
267-288, 1996.

Ehsan Elhamifar and René Vidal. Sparse subspace clustering. In Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Con-
ference on, pages 2790-2797. IEEE, 2009.

Ehsan Elhamifar and Rene Vidal. Sparse subspace clustering: Algo-
rithm, theory, and applications. IEFEE transactions on pattern analysis
and machine intelligence, 35(11):2765-2781, 2013.

John Wright, Allen Y Yang, Arvind Ganesh, Shankar S Sastry, and
Yi Ma. Robust face recognition via sparse representation. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 31(2):210-227,
2009.

David L. Donoho. For most large underdetermined systems of linear
equations the minimal 11-norm solution is also the sparsest solution.
Communications on pure and applied mathematics, 59(6):797-829, 2006.

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal
recovery from incomplete and inaccurate measurements. Communica-
tions on pure and applied mathematics, 59(8):1207-1223, 2006.

Emmanuel J Candes and Terence Tao. Near-optimal signal recovery
from random projections: Universal encoding strategies? Information
Theory, IEEE Transactions on, 52(12):5406-5425, 2006.

Peng Zhao and Bin Yu. On model selection consistency of lasso. The
Journal of Machine Learning Research, 7:2541-2563, 2006.

David L Donoho. Compressed sensing. Information Theory, IEEE
Transactions on, 52(4):1289-1306, 2006.

136

[32]

[33]

[34]

[35]

[36]

[38]

[39]

[40]

[41]

[42]

[43]

Yugiang Fang, Ruili Wang, Bin Dai, and Xindong Wu. Graph-based
learning via auto-grouped sparse regularization and kernelized extension.
2013.

Hui Zou and Trevor Hastie. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(2):301-320, 2005.

Alfred M Bruckstein, David L. Donoho, and Michael Elad. From sparse
solutions of systems of equations to sparse modeling of signals and im-
ages. SIAM review, 51(1):34-81, 2009.

G Davis. Greedy adaptive approximation. Journal of Constructive Ap-
proximation, 13(1):57-98, 1997.

Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic
decomposition by basis pursuit. SIAM review, 43(1):129-159, 2001.

Seung-Jean Kim, Kwangmoo Koh, Michael Lustig, Stephen Boyd,
and Dimitry Gorinevsky. An interior-point method for large-scale 11-
regularized least squares. IFEE journal of selected topics in signal pro-
cessing, 1(4):606-617, 2007.

Michael R Osborne, Brett Presnell, and Berwin A Turlach. A new ap-
proach to variable selection in least squares problems. IMA journal of
numerical analysis, 20(3):389-403, 2000.

Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal
forward-backward splitting. Multiscale Modeling & Simulation, 4(4):
1168-1200, 2005.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM journal on imaging sciences,
2(1):183-202, 2009.

Junfeng Yang and Yin Zhang. Alternating direction algorithms for 11-
problems in compressive sensing. SIAM journal on scientific computing,
33(1):250-278, 2011.

Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spectral clustering:
Analysis and an algorithm. In NIPS, volume 14, pages 849-856, 2001.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
22(8):888-905, 2000.

137

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C
(Applied Statistics), 28(1):100-108, 1979.

Andrew V Goldberg. Finding a maximum density subgraph. University
of California Berkeley, CA, 1984.

Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. Complexity of finding
dense subgraphs. Discrete Applied Mathematics, 121(1):15-26, 2002.

Liansheng Zhuang, Haoyuan Gao, Zhouchen Lin, Yi Ma, Xin Zhang, and
Nenghai Yu. Non-negative low rank and sparse graph for semi-supervised
learning. In CVPR, pages 2328-2335. IEEE, 2012.

P. Hall, B. U. Park BU, and R. J. Samworth. Choice of neighbor order
in nearest-neighbor classification. Annals of Statistics, 36(5):2135-2152,
2008.

Carlos D Correa and Peter Lindstrom. Locally-scaled spectral clustering
using empty region graphs. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
1330-1338. ACM, 2012.

H. Huang, H. Qin, S. Yoo, and D. Yu. Local anomaly descriptor: a
robust unsupervised algorithm for anomaly detection based on diffusion
space. ACM CIKM, pages 405-414, 2012.

Shenghua Gao, IW-H. Tsang, and Liang-Tien Chia. Laplacian sparse
coding, hypergraph laplacian sparse coding, and applications. PAMI, 35
(1):92-104, 2013.

Shuicheng Yan and Huan Wang. Semi-supervised learning by sparse
representation. In Society for Industrial and Applied Mathematics. Pro-
ceedings of the SIAM International Conference on Data Mining, page
792. Society for Industrial and Applied Mathematics, 2009.

Bin Dai, Xindong Wu, et al. Graph-based learning via auto-grouped
sparse regularization and kernelized extension. IEEE Transactions on
Knowledge and Data Engineering, page 1, 2014.

Kwangmoo Koh, Seung-Jean Kim, and Stephen P Boyd. An interior-
point method for large-scale 11-regularized logistic regression. Journal
of Machine Learning Research, 8(8):1519-1555, 2007.

138

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

A Paterek. Improving regularized singular value decomposition for col-
laborative filtering. In KDD cup and workshop, pages 5-8. ACM, 2007.

Christian Desrosiers and George Karypis. A comprehensive survey of
neighborhood-based recommendation methods. Recommender systems
handbook, pages 107-144, 2011.

Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, and
Bernhard Scholkopf. Ranking on data manifolds. Advances in Neural
Information Processing Systems, 16:169-176, 2004.

Bin Xu, Jiajun Bu, Chun Chen, Deng Cai, Xiaofei He, Wei Liu, and Jiebo
Luo. Efficient manifold ranking for image retrieval. In Proceedings of the
34th international ACM SIGIR conference on Research and development
in Information Retrieval, pages 525-534. ACM, 2011.

Yingzhen Yang, Zhangyang Wang, Jianchao Yang, Jiawei Han, and
Thomas Huang. Regularized 11-graph for data clustering. In Proceedings
of the British Machine Vision Conference. BMVA Press, 2014.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and
computational harmonic analysis, 21(1):5-30, 2006.

Allen Y Yang, Shankar S Sastry, Arvind Ganesh, and Yi Ma. Fast 1-
minimization algorithms and an application in robust face recognition:
A review. In Image Processing (ICIP), 2010 17th IEEE International
Conference on, pages 1849-1852. IEEE, 2010.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online
learning for matrix factorization and sparse coding. Journal of Machine
Learning Research, 11(Jan):19-60, 2010.

MR Brito, EL Chavez, AJ Quiroz, and JE Yukich. Connectivity of
the mutual k-nearest-neighbor graph in clustering and outlier detection.
Statistics € Probability Letters, 35(1):33-42, 1997.

Michael Donoser and Horst Bischof. Diffusion processes for retrieval
revisited. In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1320-1327. IEEE, 2013.

Joel A Tropp and Anna C Gilbert. Signal recovery from random mea-
surements via orthogonal matching pursuit. Information Theory, IEEE
Transactions on, 53(12):4655-4666, 2007.

139

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Chong You, D Robinson, and René Vidal. Scalable sparse subspace clus-
tering by orthogonal matching pursuit. In IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 1, 2016.

Alfred M Bruckstein, Michael Elad, and Michael Zibulevsky. On the
uniqueness of nonnegative sparse solutions to underdetermined systems
of equations. IEEE Transactions on Information Theory,, 54(11):4813—
4820, 2008.

Tsung-Han Lin and HT Kung. Stable and efficient representation learn-
ing with nonnegativity constraints. In Proceedings of the 31st Interna-
tional Conference on Machine Learning (ICML-14), pages 1323-1331,
2014.

Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spectral clustering;:
Analysis and an algorithm. Advances in neural information processing
systems, 2:849-856, 2002.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290(5500):2323-2326, 2000.

Shuchu Han, Hao Huang, Hong Qin, and Dantong Yu. Locality-
preserving l1-graph and its application in clustering. 2014.

Raj Rao Nadakuditi and Mark EJ Newman. Graph spectra and the
detectability of community structure in networks. Physical review letters,
108(18):188701, 2012.

Ron Edgar, Michael Domrachev, and Alex E Lash. Gene expression
omnibus: Ncbhi gene expression and hybridization array data repository.
Nucleic acids research, 30(1):207-210, 2002.

Jonatan Taminau, David Steenhoff, Alain Coletta, Stijn Meganck, Cos-
min Lazar, Virginie de Schaetzen, Robin Duque, Colin Molter, Hugues
Bersini, Ann Nowé, et al. insilicodb: an r/bioconductor package for
accessing human affymetrix expert-curated datasets from geo. Bioinfor-
matics, 27(22):3204-3205, 2011.

Helen Parkinson, Ugis Sarkans, Nikolay Kolesnikov, Niran Abeygu-
nawardena, Tony Burdett, Miroslaw Dylag, Ibrahim Emam, Anna Farne,
Emma Hastings, Ele Holloway, et al. Arrayexpress updatean archive of
microarray and high-throughput sequencing-based functional genomics
experiments. Nucleic acids research, 39(suppl 1):D1002-D1004, 2011.

140

[76]

[77]
[78]

[79]

[80]

[31]

Daniel R Rhodes and Arul M Chinnaiyan. Integrative analysis of the
cancer transcriptome. Nature genetics, 37:5S31-S37, 2005.

Shuangge Ma. Integrative analysis of cancer genomic data. 2009.

Cosmin Lazar, Stijn Meganck, Jonatan Taminau, David Steenhoff, Alain
Coletta, Colin Molter, David Y Weiss-Solis, Robin Duque, Hugues
Bersini, and Ann Nowé. Batch effect removal methods for microarray
gene expression data integration: a survey. Briefings in bioinformatics,
14(4):469-490, 2013.

Andreas Scherer. Batch effects and noise in microarray experiments:
sources and solutions, volume 868. John Wiley & Sons, 20009.

J Luo, M Schumacher, A Scherer, D Sanoudou, D Megherbi, T Davison,
T Shi, W Tong, L. Shi, H Hong, et al. A comparison of batch effect
removal methods for enhancement of prediction performance using maqc-

ii microarray gene expression data. The pharmacogenomics journal, 10
(4):278-291, 2010.

Cosmin Lazar, Jonatan Taminau, Stijn Meganck, David Steenhoff, Alain
Coletta, David Y Weiss Solis, Colin Molter, Robin Duque, Hugues
Bersini, and Ann Nowé. Geneshift: A nonparametric approach for in-
tegrating microarray gene expression data based on the inner product
as a distance measure between the distributions of genes. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB), 10
(2):383-392, 2013.

Earl Hubbell, Wei-Min Liu, and Rui Mei. Robust estimators for expres-
sion analysis. Bioinformatics, 18(12):1585-1592, 2002.

Rafael A Irizarry, Bridget Hobbs, Francois Collin, Yasmin D Beazer-
Barclay, Kristen J Antonellis, Uwe Scherf, and Terence P Speed. Ex-
ploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics, 4(2):249-264, 2003.

Matthew N McCall, Benjamin M Bolstad, and Rafael A Irizarry. Frozen
robust multiarray analysis (frma). Biostatistics, 11(2):242-253, 2010.

Chao Chen, Kay Grennan, Judith Badner, Dandan Zhang, Elliot Ger-
shon, Li Jin, and Chunyu Liu. Removing batch effects in analysis of
expression microarray data: an evaluation of six batch adjustment meth-
ods. PloS one, 6(2):¢17238, 2011.

141

[30]

[87]

8]

[89]

[90]

Andrew H Sims, Graeme J Smethurst, Yvonne Hey, Michal J
Okoniewski, Stuart D Pepper, Anthony Howell, Crispin J Miller, and
Robert B Clarke. The removal of multiplicative, systematic bias allows
integration of breast cancer gene expression datasets—improving meta-

analysis and prediction of prognosis. BMC medical genomics, 1(1):42,
2008.

Cheng Li and Wing Hung Wong. Model-based analysis of oligonucleotide
arrays: expression index computation and outlier detection. Proceedings
of the National Academy of Sciences, 98(1):31-36, 2001.

Ki-Yeol Kim, Se Hyun Kim, Dong Hyuk Ki, Jacheon Jeong, Ha Jin
Jeong, Hei-Cheul Jeung, Hyun Cheol Chung, and Sun Young Rha. An
attempt for combining microarray data sets by adjusting gene expres-
sions. Cancer Research and Treatment, 39(2):74-81, 2007.

W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects
in microarray expression data using empirical bayes methods. Biostatis-
tics, 8(1):118-127, 2007.

Andrey A Shabalin, Hakon Tjelmeland, Cheng Fan, Charles M Perou,
and Andrew B Nobel. Merging two gene-expression studies via cross-
platform normalization. Bioinformatics, 24(9):1154-1160, 2008.

Monica Benito, Joel Parker, Quan Du, Junyuan Wu, Dong Xiang,
Charles M Perou, and James Stephen Marron. Adjustment of systematic
microarray data biases. Bioinformatics, 20(1):105-114, 2004.

Orly Alter, Patrick O Brown, and David Botstein. Singular value de-
composition for genome-wide expression data processing and modeling.
Proceedings of the National Academy of Sciences, 97(18):10101-10106,
2000.

Jeffrey T Leek and John D Storey. Capturing heterogeneity in gene
expression studies by surrogate variable analysis. PLoS genetics, 3(9):
el61, 2007.

Johann A Gagnon-Bartsch and Terence P Speed. Using control genes to
correct for unwanted variation in microarray data. Biostatistics, 13(3):
539-552, 2012.

Emanuel Parzen. On estimation of a probability density function and
mode. The annals of mathematical statistics, pages 1065-1076, 1962.

142

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. A survey
of algorithms for dense subgraph discovery. In Managing and Mining
Graph Data, pages 303-336. Springer, 2010.

Bjorn H Junker and Falk Schreiber. Analysis of biological networks,
volume 2. John Wiley & Sons, 2008.

Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine
Zhou. Mining coherent dense subgraphs across massive biological net-
works for functional discovery. Bioinformatics, 21(suppl 1):1213-221,
2005.

Dongbo Bu, Yi Zhao, Lun Cai, Hong Xue, Xiaopeng Zhu, Hongchao Lu,
Jingfen Zhang, Shiwei Sun, Lunjiang Ling, Nan Zhang, et al. Topological
structure analysis of the protein—protein interaction network in budding
yeast. Nucleic acids research, 31(9):2443-2450, 2003.

Charalampos E Tsourakakis, Francesco Bonchi, Aristides Gionis,
Francesco Gullo, and Maria A Tsiarli. Denser than the densest sub-
graph: Extracting optimal quasi-cliques with quality guarantees. 2013.

Todd R Golub, Donna K Slonim, Pablo Tamayo, Christine Huard,
Michelle Gaasenbeek, Jill P Mesirov, Hilary Coller, Mignon L Loh,
James R Downing, Mark A Caligiuri, et al. Molecular classification

of cancer: class discovery and class prediction by gene expression moni-
toring. science, 286(5439):531-537, 1999.

Yi-Kuei Lin. Reliability evaluation for an information network with node
failure under cost constraint. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, 37(2):180-188, 2007.

Ernesto Estrada, Naomichi Hatano, and Michele Benzi. The physics of
communicability in complex networks. CoRR, abs/1109.2950, 2011.

Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama.
Greedily finding a dense subgraph. J. Algorithms, 34(2):203-221, 2000.

A. V. Goldberg. Finding a maximum density subgraph. Technical Report
CSD-84-171, UC Berkeley, 1984.

Jeffrey Pattillo, Alexander Veremyev, Sergiy Butenko, and Vladimir Bo-
ginski. On the maximum quasi-clique problem. Discrete Applied Math-
ematics, 161(1-2):244-257, 2013.

143

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Thomas A. Feo and Mauricio G.C. Resende. Greedy randomized adap-
tive search procedures. J. of Optimization, 6:109-133, 1995.

Réka Albert, Hawoong Jeong, and Albert-Laszlé Barabési. Error and
attack tolerance of complex networks. Nature, 406(6794):378-382, 2000.

D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Net-
work Robustness and Fragility: Percolation on Random Graphs. Phys.
Rev. Let., 85(25):5468-5471, 2000.

Hau Chan, Leman Akoglu, and Hanghang Tong. Make It or Break It:
Manipulating robustness in large networks. In SDM, 2014.

Reuven Cohen, Keren Erez, Daniel B. Avraham, and Shlomo Havlin.
Breakdown of the Internet under Intentional Attack. Physical Review
Letters, 86(16):3682-3685, April 2001. doi: 10.1103/physrevlett.86.3682.

E. Estrada. Network robustness to targeted attacks: The interplay of
expansibility and degree distribution. The Euro. Phys. J. B, 52(4):563—
574, 2006.

P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han. Attack vulnerability
of complex networks. Phy. R. E, 65(5), 2002.

Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Falout-
sos, and Christos Faloutsos. Gelling, and melting, large graphs by edge
manipulation. In CIKM, pages 245-254, 2012.

H. Frank and I. Frisch. Analysis and Design of Survivable Networks.
IEEE Trans. on Comm. Tech., 18(5), 1970.

Benjamin Shargel, Hiroki Sayama, Irving R Epstein, and Yaneer Bar-
Yam. Optimization of robustness and connectivity in complex networks.
Phys Rev Lett, 90(6):068701, 2003.

G. Paul, T. Tanizawa, S. Havlin, and H. Stanley. Optimization of robust-
ness of complex networks. The Eur. Phys. J. B, 38(2):187-191, 2004.

Walid K. Ghamry and Khaled M. F. Elsayed. Network design methods
for mitigation of intentional attacks in scale-free networks. Telecom.
Systems, 49(3):313-327, 2012.

Stojan Trajanovski, Fernando A. Kuipers, and Piet Van Mieghem. Find-
ing critical regions in a network. In INFOCOM, 2013.

144

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Yilin Shen, Nam P. Nguyen, Ying Xuan, and My T. Thai. On the
discovery of critical links and nodes for assessing network vulnerability.
IEEE/ACM Trans. Netw., 21(3), 2013.

Vito Latora and Massimo Marchiori. Vulnerability and protection of
infrastructure networks. Phys. Rev. E, 71:015103, 2005.

Marco Di Summa, Andrea Grosso, and Marco Locatelli. Branch and cut
algorithms for detecting critical nodes in undirected graphs. Comp. Opt.
and Appl., 53(3):649-680, 2012.

Takeshi Fujimura and Hiroyoshi Miwa. Critical links detection to main-
tain small diameter against link failures. In INCoS, pages 339-343. IEEE,
2010.

Reid Andersen and Sebastian M. Cioaba. Spectral densest subgraph and
independence number of a graph. J. UCS, 13(11):1501-1513, 2007.

M. Garey and D. Johnson. Computers and Intractability - A guide to
the Theory of NP-Completeness. Freeman, 1979.

Johan Hastad. Clique is hard to approximate within n*=¢. In FOCS,
pages 627-636. IEEE Computer Society, 1996.

Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. Complexity of finding
dense subgraphs. Disc. Appl. Math., 121(1-3):15-26, 2002.

Jian Pei, Daxin Jiang, and Aidong Zhang. On mining cross-graph quasi-
cliques. In KDD, pages 228-238, 2005.

Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu C. Aggarwal. A
survey of algorithms for dense subgraph discovery. In Managing and
Mining Graph Data. Springer, 2010.

Wendy Ellens and Robert E. Kooij. Graph measures and network ro-
bustness. CoRR, abs/1311.5064, 2013.

Jun Wu, Barahona Mauricio, Yue-Jin Tan, and Hong-Zhong Deng. Nat-
ural connectivity of complex networks. Chinese Physics Letters, 27(7):
78902, 2010. doi: 10.1088/0256-307X/27/7/078902.

Ernesto Estrada. Characterization of the folding degree of proteins.
Bioinformatics, 18(5):697-704, 2002.

145

[133]

[134]

[135]

[136]

[137]

[138)]

[139]

[140]

141]

[142]

[143]

G. W. Stewart and Ji-Guang Sun. Matrixz Perturbation Theory. Aca-
demic Press, 1990.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-
law relationships of the internet topology. In SIGCOMM, 1999.

Charalampos E. Tsourakakis. Fast counting of triangles in large real
networks without counting: Algorithms and laws. In ICDM, pages 608
617. IEEE Computer Society, 2008.

Marcelo Prais and Celso C. Ribeiro. Reactive GRASP: An application
to a matrix decomposition problem in TDMA traffic assignment. IN-
FORMS, 12(3):164-176, 2000.

David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis.
J. Comp. Sys. Sci., 37(1), 1988.

Xiaofei He, Ming Ji, Chiyuan Zhang, and Hujun Bao. A variance min-
imization criterion to feature selection using laplacian regularization.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33
(10):2013-2025, 2011.

Chenping Hou, Feiping Nie, Xuelong Li, Dongyun Yi, and Yi Wu. Joint
embedding learning and sparse regression: A framework for unsupervised
feature selection. Cybernetics, IEEE Transactions on, 44(6):793-804,
2014.

Xinwang Liu, Lei Wang, Jian Zhang, Jianping Yin, and Huan Liu.
Global and local structure preservation for feature selection. Neural Net-
works and Learning Systems, IEEE Transactions on, 25(6):1083-1095,
2014.

Zheng Zhao, Lei Wang, Huan Liu, and Jieping Ye. On similarity preserv-
ing feature selection. Knowledge and Data Engineering, IEEE Transac-
tions on, 25(3):619-632, 2013.

Yi Yang, Heng Tao Shen, Zhigang Ma, Zi Huang, and Xiaofang Zhou.
12, 1-norm regularized discriminative feature selection for unsupervised
learning. In IJCAI Proceedings-International Joint Conference on Arti-
ficial Intelligence, volume 22, page 1589. Citeseer, 2011.

Zechao Li, Yi Yang, Jing Liu, Xiaofang Zhou, and Hanqging Lu. Unsu-
pervised feature selection using nonnegative spectral analysis. In AAAL
2012.

146

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When is nearest neighbor meaningful? In International conference on
database theory, pages 217-235. Springer, 1999.

Roger Weber, Hans-Jorg Schek, and Stephen Blott. A quantitative
analysis and performance study for similarity-search methods in high-
dimensional spaces. In VLDB, volume 98, pages 194-205, 1998.

Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the
surprising behavior of distance metrics in high dimensional space. In
International Conference on Database Theory, pages 420-434. Springer,
2001.

Liang Du and Yi-Dong Shen. Unsupervised feature selection with adap-
tive structure learning. In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages
209-218. ACM, 2015.

Manoranjan Dash and Huan Liu. Feature selection for classification.
Intelligent data analysis, 1(3):131-156, 1997.

Marko Robnik-Sikonja and Igor Kononenko. Theoretical and empirical
analysis of relieff and rrelieff. Machine learning, 53(1-2):23-69, 2003.

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on
mutual information criteria of max-dependency, max-relevance, and min-
redundancy. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 27(8):1226-1238, 2005.

Jennifer G Dy and Carla E Brodley. Feature selection for unsupervised
learning. The Journal of Machine Learning Research, 5:845-889, 2004.

Deng Cai, Chiyuan Zhang, and Xiaofei He. Unsupervised feature selec-
tion for multi-cluster data. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
333-342. ACM, 2010.

Lei Yu and Huan Liu. Efficient feature selection via analysis of relevance
and redundancy. The Journal of Machine Learning Research, 5:1205—
1224, 2004.

D KOLLER. Toward optimal feature selection. In Proc. 13th Interna-
tional Conference on Machine Learning, pages 284-292. Morgan Kauf-
mann, 1996.

147

[155]

[156]

[157]

158

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Zheng Zhao, Lei Wang, Huan Liu, et al. Efficient spectral feature selec-
tion with minimum redundancy. In AAAI 2010.

Xuerui Wang, Andrew McCallum, and Xing Wei. Feature selection with
integrated relevance and redundancy optimization. In Data Mining,
2015. ICDM 2015. Fifteenth IEEE International Conference on, pages
697-702. IEEE, 2015.

De Wang, Feiping Nie, and Heng Huang. Feature selection via global re-
dundancy minimization. Knowledge and Data Engineering, IEEE Trans-
actions on, 27(10):2743-2755, 2015.

Julien Mairal and Bin Yu. Supervised feature selection in graphs with
path coding penalties and network flows. The Journal of Machine Learn-
ing Research, 14(1):2449-2485, 2013.

Qinbao Song, Jingjie Ni, and Guangtao Wang. A fast clustering-based
feature subset selection algorithm for high-dimensional data. Knowledge
and Data Engineering, IEEE Transactions on, 25(1):1-14, 2013.

Mingxia Liu, Dan Sun, and Daoqiang Zhang. Sparsity score: A new
filter feature selection method based on graph. In Pattern Recognition
(ICPR), 2012 21st International Conference on, pages 959-962. IEEE,
2012.

J. Li, K. Cheng, S. Wang, F. Morstatter, R. Trevino, J. Tang, and
H. Liu. Feature selection: A data perspective. 2016. URL http://
featureselection.asu.edu/.

Yoshua Bengio, Aaron Courville, and Pierre Vincent. Representation
learning: A review and new perspectives. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 35(8):1798-1828, 2013.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In Proceedings of
Workshop at ICLR, 2013.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP 2014), 12, 2014.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit ma-
trix factorization. In Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada, pages 2177-2185, 2014.

148

http://featureselection.asu.edu/
http://featureselection.asu.edu/

[166]

167]

[168]

[169]

[170]

[171]

172]
[173]

[174]

[175]
[176]

[177]

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 701-710. ACM, 2014.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their compo-

sitionality. In Advances in neural information processing systems, pages
3111-3119, 2013.

https://www.census.gov/topics/population/genealogy/data/
1990_census/1990_census_namefiles.html, .

https://www.census.gov/topics/population/genealogy/data/
2000_surnames.html, .

Ralph Gross and Alessandro Acquisti. Information revelation and pri-
vacy in online social networks. In Proceedings of the 2005 ACM workshop
on Privacy in the electronic society, pages 71-80. ACM, 2005.

David L. Word, Charles D Coleman, Robert Nunziata, and Robert
Kominski. Demographic aspects of surnames from census 2000.

Unpublished manuscript, Retrieved from http://citeseerx. ist. psu.
edu/viewdoc/download, 2008.

https://code.google.com/archive/p/word2vec/.

Laurens Van Der Maaten. Accelerating t-sne using tree-based algo-
rithms. The Journal of Machine Learning Research, 15(1):3221-3245,
2014.

Yifan Hu, Emden Gansner, and Stephen Kobourov. Visualizing graphs
and clusters as maps. [EEE Computer Graphics and Applications, 30:
54-66, 2010.

http://www.behindthename. com.

Alan Mislove, Sune Lehmann, Yong-Yeol Ahn, Jukka-Pekka Onnela, and
J Niels Rosenquist. Understanding the demographics of twitter users.
ICWSM, 11:5th, 2011.

Xiaofei He, Deng Cai, Shuicheng Yan, and Hong-Jiang Zhang. Neigh-
borhood preserving embedding. In Computer Vision, 2005. ICCV 2005.
Tenth IEEE International Conference on, volume 2, pages 1208-1213.
IEEE, 2005.

149

https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
https://www.census.gov/topics/population/genealogy/data/2000_surnames.html
https://www.census.gov/topics/population/genealogy/data/2000_surnames.html
https://code.google.com/archive/p/word2vec/
http://www.behindthename.com

[178]

[179]

[180]

[181]

[182]

[183]

184]

[185]

[186]

[187]

[188]

Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang,
and Stephen Lin. Graph embedding and extensions: a general framework

for dimensionality reduction. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 29(1):40-51, 2007.

Deng Cai, Xiaofei He, and Jiawei Han. Semi-supervised discriminant
analysis. In Computer Vision, 2007. ICCV 2007. IEEE 11th Interna-
tional Conference on, pages 1-7. IEEE, 2007.

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston,
and Bernhard Scholkopf. Learning with local and global consistency. Ad-
vances in neural information processing systems, 16(16):321-328, 2004.

Thorsten Joachims et al. Transductive learning via spectral graph par-
titioning. In ICML, volume 3, pages 290-297, 2003.

Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised
learning using gaussian fields and harmonic functions. In ICML, vol-
ume 3, pages 912-919, 2003.

Fan RK Chung. Spectral graph theory, volume 92. Amer Mathematical
Society, 1997.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and prov-
ably informative multi-scale signature based on heat diffusion. In Com-
puter graphics forum, volume 28, pages 1383-1392. Wiley Online Library,
2009.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of
approximating the frequency moments. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, pages 20-29.
ACM, 1996.

Edo Liberty. Simple and deterministic matrix sketching. In Proceed-
ings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 581-588. ACM, 2013.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni.
Locality-sensitive hashing scheme based on p-stable distributions. In
Proceedings of the twentieth annual symposium on Computational geom-
etry, pages 253-262. ACM, 2004.

Yining Wang, Yu-Xiang Wang, and Aarti Singh. Graph connectivity in
noisy sparse subspace clustering. CoRR abs/1504.01046, 2016.

150

	 List of Figures
	 List of Tables
	 Acknowledgements
	 Publications
	1 Introduction
	1.1 Problem Statement
	1.2 Research Challenges
	1.3 Research Contributions
	1.4 Dissertation Organization

	2 Background Review
	2.1 Graph Construction Methods for Similarity Measures
	2.2 L1 Minimization.
	2.3 Spectral Embedding and Clustering
	2.4 Dense Subgraph

	3 Locality-Preserving and Structure-Aware L1 Graphs
	3.1 Chapter Introduction
	3.2 Related Works
	3.3 LOP-L1 Graph
	3.4 SA-L1 Graph
	3.5 Experiments
	3.5.1 Experiment Setup
	3.5.2 Analysis of Basis Pool Scaling
	3.5.3 Performance of LOP-L1 Graph
	3.5.4 Performance of SA-L1 Graph

	3.6 Chapter Summary

	4 Greedy Sparse Graph by Using Ranked Dictionary
	4.1 Chapter Introduction
	4.2 Unstable Solutions caused by Different L1 Solvers
	4.3 Algorithm
	4.3.1 Ranked Dictionary
	4.3.2 Greedy L1 Graph
	4.3.3 Connection to Subspace Clustering
	4.3.4 Connection to Locally Linear Embedding
	4.3.5 Spectral Clustering Performance

	4.4 Experiments
	4.4.1 Small-sized Data
	4.4.2 Large-sized Data and Multiple Classes Data

	4.5 Chapter Summary

	5 Dense Subgraph based Multi-source Data Integration
	5.1 Chapter Introduction
	5.2 Related Works
	5.3 Data
	5.4 Algorithm
	5.4.1 Expression Value Model
	5.4.2 Problem Definition
	5.4.3 Assumption
	5.4.4 Co-analysis Framework
	5.4.5 Improved Ratio-based Method

	5.5 Validation
	5.6 Experiments
	5.7 Chapter Summary

	6 Mining Robust Local Subgraphs in Large Graphs
	6.1 Chapter Introduction
	6.2 Related Works
	6.3 Robust Local Subgraphs
	6.3.1 Graph Robustness
	6.3.2 Problem Definition

	6.4 Robust Local Subgraph Mining
	6.4.1 Greedy Top-down Search Approach
	6.4.2 Greedy Randomized Adaptive Search Procedure (GRASP) Approach

	6.5 Evaluations
	6.6 Chapter Summary

	7 Sparse Feature Graph
	7.1 Chapter Introduction
	7.2 Related Works
	7.3 Background and Preliminaries
	7.3.1 Unsupervised Feature Selection
	7.3.2 Adaptive Structure Learning for High Dimensional Data
	7.3.3 Redundant Features

	7.4 Problem Statement
	7.5 Algorithm
	7.5.1 Sparse Feature Graph (SFG)
	7.5.2 Sparse Representation Error
	7.5.3 Local Compressible Subgraph
	7.5.4 Redundant Feature Removal

	7.6 Experiments
	7.6.1 Experiment Setup
	7.6.2 Effectiveness of Redundant Features Removal
	7.6.3 Performance of MCFS
	7.6.4 Sparse Representation Errors

	7.7 Chapter Summary

	8 Capturing Properties of Names with Distributed Representations
	8.1 Chapter Introduction
	8.2 Related Work
	8.3 Building Name Embeddings
	8.3.1 Methodology
	8.3.2 Data Sources and Preparation
	8.3.3 Word2vec Embeddings
	8.3.4 Evaluation of Different Word2vec Embeddings

	8.4 Properties of Name Embeddings
	8.4.1 Gender Coherence and Analysis
	8.4.2 Ethnicity Coherence and Analysis
	8.4.3 Name Popularity Analysis

	8.5 Cultural Coherence Mining
	8.5.1 Coherence in Gender Distribution
	8.5.2 Coherence in Ethnicity Distribution

	8.6 Applications
	8.6.1 Replacement Name Generation
	8.6.2 De Novo Name Generation

	8.7 Chapter Summary

	9 Conclusion and Ongoing Works
	9.1 Contribution Summary
	9.2 On-going Works
	9.2.1 Subspace Learning with Sparse Graph
	9.2.2 Semi-supervised Learning with Sparse Graph
	9.2.3 Diffusion-based Learning

	9.3 Future Research Directions

	 Bibliography

