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Abstract—Volumetric parameterization plays an important
role for geometric modeling. Due to the complicated topolog-
ical nature of volumes, it is much more challenging than the
surface case. This work focuses on the parameterization of
volumes with a boundary surface embedded in 3D space. The
intuition is to decompose the volume as the direct product of
a two dimensional surface and a one dimensional curve. We
first partition the boundary surface into ceiling, floor and
walls. Then we compute the harmonic field in the volume
with a Dirichlet boundary condition. By tracing the integra l
curve along the gradient of the harmonic function, we can
parameterize the volume to the parametric domain. The
method is guaranteed to produce bijection for handlebodies
with complex topology, including topological balls as a de-
generate case. Furthermore, the parameterization is regular
everywhere. We apply the proposed parameterization method
to construct hexahedral mesh.

Keywords-Solid modeling, volume parameterization, hexahe-
dral mesh, polycube, harmonic fields, handlebody, direct-
product.

I. I NTRODUCTION

Most real-world shapes are volumetric. The need for vol-
umetric parameterization is ubiquitous in various research
fields. In medical imaging, for example, the registration
between two 3D image data sets can be reduced to building
a map between their underlying parameter domains. In
finite element simulations, hexahedral meshes are a highly
desired representation for volumes, while such a mesh can
be easily built out of the parameterization using certain
canonical domains.

Unlike the widely studied surface parameterization, volu-
metric parameterization has not drawn too much attention,
this is mainly because of the intrinsic difference between
surface and volume. For example, it is well-known that
a harmonic map between a topological disk and a planar
convex domain is diffeomorphic, if the boundary map is
a homeomorphism. This result plays an important role in
surface parameterization. Unfortunately, such an approach
is not applicable for volumes, i.e., volumetric harmonic

Figure 1: Handlebodies can be viewed as direct product
of shapes in lower dimension. (a) Solid cube is the direct
product of three line segments. (b) Solid torus is the direct
product of a disk and a circle.

map does not guarantee to be bijective even though the
parametric domain is convex. Therefore, it is technically
challenging to generalize the surface parameterization to
volume case.

In this work we focus on the parameterization of 3-
dimensional handlebodies that can be decomposed into
the direct product of 2-dimensional surface and a 1-
dimensional curve. These models are very common in
engineering fields, thus, the parameterization of such
models is highly desirable. Note that many canonical
domains have extremely simple structures. Some of them
are just direct product of shapes from lower dimensions.
Figure 1 shows examples including a solid cube, which is
the direct product of three 1-dimensional line segments,
and a solid torus, which is the direct product of a 2-
dimensional disk and a 1-dimensional circle. The reason
we prefer direct product domains is two-folded. Firstly,
there is no singularity in a direct product domain, thus
the parameterization would not degenerate at any point
of the volume. Secondly, such structures will make many
tasks easier, such as volumetric remeshing, volumetric
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Figure 2: Direct product volumetric parameterization. The input is atetrahedral mesh representing a 3D handlebody. We
parameterize the boundary mesh to a polycube which also serves the parametric domain of the volume parameterization.
Then we decompose the boundary mesh into ceiling (red), floor(blue) and walls (yellow). The ceiling and floors are
topological annulus, the walls contain two topological cylinders. Next, we compute volumetric harmonic functions with
the Dirichlet boundary conditions. Finally, the harmonic fields induce a homeomorphism between the handlebody and
the polycube domain. The cut view illustrate the volumetricparameterization.

registration, physical simulation and so on.

Given a 3D handlebodyM, we first construct a parametric
domain P. To facilitate the hexahedral remeshing, we
choose polycube due to its regular structure. Then, we
compute a bijective map between the boundary surfaces
∂M and∂P. Next, we partition∂P into ceiling, floor and
walls. The bijective polycube map induces the partition
of ∂M. We compute the volumetric harmonic map with
a Dirichlet boundary condition, i.e., the ceiling points are
with boundary value 1, and floor points with boundary
value 0. Finally, we construct a map betweenM andP by
tracing the gradient field of harmonic functions. Figure 2
shows the parameterization of the genus-1 Rockerarm
model to a polycube domain.

The proposed method has the following features:

• The algorithm is able to parameterize volumes with
complex topology. It can also be downgraded and ap-
plied to volumes with trivial topology (i.e. topological
balls).

• The parametric domain is simple and easy to con-
struct. Loosely speaking, it is the direct product of
a surface patch and a line segment. The resulted
map between the original volume and the parameter
domain is bijective, and there is no singularity. To
our knowledge, our method is the first work that can
guarantee the bijectivity of the parameterization for
volumes with non-trivial topology.

• At any point in the volume, thew iso-parametric lines
(which follow the gradient of the harmonic field) are
orthogonal tou and v iso-parametric lines (which
span the iso-surfaces of the harmonic field).

The rest of the paper is organized as follows. Section
II briefly reviews the related work. Section III explains
the necessary notations and background knowledge. The
algorithm details are presented in Section IV, followed
by some experimental results and comparisons in Section
V. We conclude the paper and point out several future
directions in Section VI.

II. RELATED WORK

A. Surface Parameterization

Surface parameterization has been extensively studied in
the past decades. The survey papers by Sheffer et al
[23] and Floater et al [8] are good reference for general
interests. Many linear methods have been proposed for
the conformal mapping. For example, DCP [6] and LSCM
[14] are two of the earliest works that can handle multi-
holed annuli. Both of them construct the mapping by
solving certain linear systems with fixed or free boundary
conditions. Slit map [35] is another linear method pro-
posed to achieve regular boundaries of the annulus, where
all the boundaries are mapped to parallel straight slits or
concentric circles and arcs. Mullen et al [30] presented
spectral conformal parameterization that finds the largest
eigenvalue/eigenvector of a generalized eigenvalue prob-
lem involving sparse, symmetric matrices. This method
does not have the common artifacts due to positional
constraints on vertices.

Though computationally efficient, the above methods lack
the flexible control on the boundaries. It turns out that
finer control on the boundaries usually incurs much heav-
ier computation. Discrete curvature flow uses curvature
constraints to guide the metric deformation. Several non-
linear computational methods have been proposed along
this line, such as the circle pattern by Kharevych et
al [13], the discrete Ricci flow by Jin et al [12] and
the conformal equivalence by Springborn et al [24]. To
alleviate the computational burden, Ben-Chen et al [1]
proposed a linearized method with a trade-off that depends
on applications. All these methods allow the users to
design the boundary shape by prescribing the appropriate
curvature on the boundary (as well as that inside).

B. Volume Parameterization

Harmonic map plays an important role in surface param-
eterization. In [33], Wang et al generalized the surface
harmonic map to volumes. They derived the formula of
the the discrete harmonic map on tetrahedral meshes and
then proposed a method to map genus-0 volumes to solid
balls.



Li et al [15] [16] used the method of fundamental so-
lution to build a mapping between volumes with the
same topology. This method is essentially a simulation
of electric fields over point clouds, and requires to place
sufficient number of points (i.e. electric charges) off the
boundary to enforce an approximated boundary condition.
Li et al’s method is able to parameterize the handlebodies,
but it is computationally expensive to solve the harmonic
map using fundamental solution method. Furthermore, the
resulted map is not a bijection.

Martin et al [18] presented a method to parameterize vol-
umes to the cylinder. By choosing a 1-dimensional skele-
ton inside the volume, they solved a harmonic map using
the skeleton and the boundary surface as the boundary
constraints. By tracing the gradient field of the harmonic
function, they constructed a map between the volumes
and the cylinder. Note that this method parameterizes only
topological balls and can not process general handlebod-
ies. Furthermore, the skeleton is the singularity of the
constructed map.

Recently, Xia et al [34] showed that the Green’s functions
on star-shaped volume has a unique critical point and
then developed a method to parameterize star shapes. The
constructed map is guaranteed to be a diffeomorphism.

In contrast to the existing approaches, the proposed
method is able to parameterize general handlebodies with
a direct-product parameter domain without any singularity.

C. Hexahedral Mesh Construction

Hexahedral meshes are widely used in computer-aided
design and manufacturing due to its promising properties
in the analysis stage [2], [5]. However, constructing high
quality hexahedral mesh is a challenging problem [3].

The grid-based algorithms first fill the interior of the
volume with a regular grid and then adaptively fit the
boundary vertices [20], [21]. The generated meshes have
nearly perfect elements in the interior, however, the quality
near the boundary is usually poor.

Plastering [4] is a natural 3D extension of paving algo-
rithms that have proven reliable for quadrilateral mesh-
ing on surfaces. Starting from the quadrilateral bounding
meshes, fronts are determined and then advanced inward.
This algorithm frequently has deficiencies when opposing
fronts collide and can not resolve the unmeshed center
voids due to being over-constrained by a pre-existing
boundary mesh. The unconstrained plastering technique
[25], [26] leverages the benefits of paving and plastering,
without the over-constrained nature of plastering.

Whisker weaving algorithm [28], [29] also starts from
a pre-defined boundary quad mesh. It first builds the
combinatorial dual of a mesh based on the spatial twist
continuum and then constructs the primal mesh and its
embedding afterwards.

Embedded Voronoi graph contains the full symbolic infor-
mation of the Voronoi diagram and the medial axis of the
object, and a geometric approximation to the real geome-
try [7]. In [22], the algorithm uses the embedded Voronoi
graph to decompose the volumes into simple sub-volumes
that can be further meshed using conventional meshing
methods. This method can handle arbitrary volume even
if the medial axis is degenerate.

In our approach, we parameterize volumes to polycube
domain. Note that the parametric domain is just the union
of small cubes, thus, the parameterization induces a regular
hexahedral meshing of the given volumes, i.e., every
interior vertex is adjacent to exactly six edges. To our
knowledge, none of the existing approaches can generate
such regular hexahedral meshes.

D. Polycube Map

Our algorithm is closely related to the polycube map
which is used to compute the map between the boundary
surfaces. The concept of polycube map was pioneered by
Tarini et al [27]. Wang et al proposed an intrinsic method
that guarantee to produce a one-to-one map between the
polycube and 3D model [31]. Later, they developed a
method that allows the user to specify the extraordinary
points [32], and applied to the construction of manifold
splines [9]. Lin et al presented an automatic algorithm to
construct polycube maps for 3D models with simple geom-
etry and topology [17]. Recently, He et al presented an al-
gorithm to automatically construct polycube map [11]. By
taking advantage of the divide-and-conquer strategy, their
method can process large-scale models easily. However,
their method is orientation dependent and usually leads
to polycubes with large number of extraordinary points.
To our knowledge, all these approaches focus on surface
polycube maps, while our work starts from such a surface
polycube map and then extends to the bounded volumes.

III. T HEORETICAL BACKGROUND

In this section we briefly introduce some necessary back-
ground knowledge that is underlying our algorithm, as
well as the notations used in the paper.

A. Handlebodies

In general, ann-hole (n≥ 1) handlebody is a 3-manifold
whose boundary is a surface that can be continuously
deformed to some unknottedn-hole torus without tearing
or self intersection. For such a volumeH, its boundary
surface∂H can be covered by a set of charts,

∂H = B0∪B1∪
n⋃

i=0

Di

whereB0 and B1 are calledbases, or to be specific,B0

is the floor andB1 the ceiling respectively. They are two
disjoint n-hole annuli,B0∩B1 = ∅. EachDi(i ∈ [0..n]) is



called awall, which is a topological cylinder with both
ends open. All the walls are pairwisely disjoint,Di ∩D j =
∅(i 6= j). A baseBk(k∈ {0,1}) and a wallDl (l ∈ [0..n])
intersect at a 1-dimensional simple loop,ζkl = Bk ∩Dl .
Figure 3 shows the Figure Eight model which is a 2-hole
handlebody.

(a)

(b) Ceiling & floor (c) Walls

Figure 3: Direct product of Figure Eight model. The
parametric domain (a genus-2 polycube) is the direct
product of 2-hole disk and line segment, see (a). Both the
volume and the polycube domain can be decomposed into
ceiling, floor and walls, see (b)-(c).

As a special case, volumes without any handle (i.e. topo-
logical solid balls) can be considered as degenerate handle
bodies withn = 0. The boundary surface for such bodies
can also be partitioned into bases and walls, where each
base is a topological disk and there is only one single wall.

B. Volume Parameterization

For surfaces, parameterization is the process of computing
a mapping between the original surface mesh inR

3 and
a parametric domain that is usually a planar mesh in
R

2. This is equivalent to assigning a pair of real valued
coordinates to every vertex in the mesh.

Parameterization for volumetric data can be defined in a
similar fashion. Given a tetrahedral meshM = (V,E,F,T)
whereV, E, F , T are the set of vertices, edges, triangles
and tetrahedral respectively. Each vertexpi ∈V is assigned
with a triple coordinates(ui ,vi ,wi). This is equivalent to
compute three real valued parameter functions:

{u,v,w} : V → R

Note that although these functions are by definition re-
stricted on vertices, it can be extended through out the
whole tetrahedral mesh piecewisely. Namely, the function
value for an arbitrary point in the volume is defined as
the interpolation of the values on the four vertices of
the tetrahedron. In this paper we use the same symbol
to denote both the function restricted to vertices and that
extended to the volume.

C. Volumetric Harmonic Function

In general, a scalar functionf is harmonic if it satisfies
the Laplace’s equation△ f = 0 with Dirichlet boundary
condition. This concept can be generalized to discrete
tetrahedral mesh [33].

Given a tetrahedral meshM, let f : V →R be a real valued
function defined over the vertices, letfi = f (pi) , pi ∈V. f
is harmonic if and only if it satisfies the following discrete
Laplace’s equation:

∑
ei j ∈E

ki j ( f j − fi) = 0

whereei j is an edge connecting vertexpi to p j and ki j

is a real valued weight assigned withei j . Following [33]
[19], we define the weights as follows. Suppose edgeei j is
shared bym adjacent tetrahedra, it lies againstm dihedral
angles{θk}, k = 1, · · · ,m. Then the edge weight forei j

can be defined aski j = 1
12 ∑m

k=1 l i j cotθk, where l i j is the
length of edgeei j .

Same to that in the smooth setting, we can impose
Dirichlet boundary conditions on the discrete volumetric
harmonic function. Namely, we set the value off fixed
on certain verticesvi ∈Vc, whereVc is the set of vertices
that serve as constrained vertices.

Once a harmonic functionf is computed over a tetrahedral
mesh, one can compute its gradient▽ f , which is a vector
field that is piecewise constant. An integral curve of the
gradient vector field is a curve such that the tangent vector
equals the gradient. Tracing such integral curves will lead
to a volumetric parameterization.

IV. D IRECT PRODUCT VOLUMETRIC

PARAMETERIZATION

A. Overview

In this section, we choose the polycube as the parametric
domain due to the following reasons: first, polycube has
a regular structure and can be used to construct all-
hexahedral meshes; second, there are well-developed tech-
niques to construct the polycube map that serves the map
between the boundary surfaces; third, due to the geometric
simplicity, it is usually easier to partition the boundary
surface of polycube than that of the input model.

Since the goal is to parameterize the given volumeM
to the polycubeP, we need to compute the parameter
functions(u,v,w)M and(u,v,w)P for M andP respectively.
Then we construct a function that maps(u,v)M to (u,v)P.
Finally, the parameterizationφ : M → P is induced by the
map (u,v,w)M → (u,v,w)P. This idea can be illustrated
using the following commutative diagram:



M P

(u,v,w)M (u,v,w)P

-
φ :M→P

? ?

-

h:(u,v)M→(u,v)P

The proposed direct product volume parameterization con-
tains the following steps:

• Input: A tetrahedral meshM for a handle body and
a polycubeP.

• Output: A bijectionφ : M → P.
1) Partition the boundary surfaces∂M and∂P into

basesBi and wallsD j ;
2) Compute harmonic functionsfM and fP using

the partition as Dirichlet boundary conditions;
3) Trace the integral curves for every interior ver-

tex.
4) Trace the integral curves on the walls.

(a) (b)

(c) (d)

Figure 4: Partition the boundary surface into ceiling,
floor and walls. We first construct the polycube map for
the boundary surface The top and bottom faces of the
polycube serve the ceiling and floor and the remaining
part is the wall. The polycube map induces the surface
partition on the 3D model.

B. Computing the harmonic fields

Given a tetrahedral meshM and the user-constructed poly-
cube domainP, we first construct the polycube map be-
tween the boundary surfaces∂M and∂P using the divide-
and-conquer approach by [11]. We design the polycube

manually to reduce its complexity which facilitates the
boundary decomposition. Then, we partition the boundary
surfaces into bases (ceiling and floor) and walls. Note
that the polycube domain has simpler structure than the
original surface. Thus, it is much easier to partition the
polycube boundary surface than the original model. To
do this, the user just simply choose the desired polycube
faces by several mouse clicks. By taking advantage of
the bijectivity of the polycube map, the partition of∂P
naturally induces a partition of∂M. Let BM

i andBP
i denote

the bases for∂M and∂P respectively. Similar,DM
j andDP

j
denote the walls. Figure 4 and 8 show the partition of the
genus-0 Bimba and genus-2 Cup via the polycube maps.

With the ceiling/floor/wall partition, we are ready to com-
pute the harmonic fields for bothM andP. Specifically, we
solve two harmonic functionsfM : M →R and fP : P→R,
such that

△ f (p) = 0, ∀p /∈ B0∪B1

f (p) = 0, ∀p∈ B0

f (p) = 1, ∀p∈ B1.

Figure 5 show the computed harmonic fields inM andP
of the genus-0 Bimba model.

C. Tracing inside the volume

To trace the integral curve, we need to compute the
gradient offM and fP. Given an arbitrary scalar functiong,
the gradient∇g can be computed as follows [10]: suppose
ti jkl is a tetrahedron with vertices{pi , p j , pk, pl}, the face
on the tetrahedron against vertexpi is fi ; similarly p j , pk,
andpl are againstf j , fk, and fl , respectively. We definesi

to be the vector along the normal offi with length equal
to 2 times the area offi , and so cansj ,sk,sl be defined.
Then, the gradient ofg in ti jkl is a constant vector field

∇g = g(pi)si +g(p j)sj +g(pk)sk +g(pl)sl .

We then define the vertex gradient as the average of the
gradient vectors in the neighboring tetrahedra.

The parameterization from theM to P is constructed as
follows: given an interior points∈ M, we trace the inte-
gration curveγ of the gradient field∇ fM . The integration
curve γ intersects the ceiling and floor atp ∈ BM

1 and
q∈ BM

0 .

Using the polycube map, we can define a floor maph :
BM

0 → BP
0 that maps each floor pointq∈ BM

0 to q′ ∈ BP
0 .

Then we compute an integral curveγ ′ starting fromq′ and
following ∇ fP. γ ′ intersects the ceiling atp′ ∈BP

1 . Then we
can find a unique points′ ∈ γ ′ such that fP(s′) = fM(s).
The point s′ ∈ P is the image ofs, i.e., φ(s) = s′. By
computing the images for every interior vertex inM, we
build the parameterization between the interior ofM and
P.

Note that each integral curve starts from a point on the
floor and then terminates at a point on the ceiling. Since



(a) (b) (c) (d) (e)

Figure 5: Computing the harmonic fields of the genus-0 Bimba model. We solve a volumetric harmonic map△ f = 0
with boundary conditions f(B0) = 0 and f(B1) = 1. The volume renderings (a)-(d) show the computed harmonic fields
on the polycube and 3D model. (e) shows several iso-surfacesof harmonic fields.

the floor is ag-hole disc if ∂M is of genus-g, we can
map theg-hole disc to planar domain and then assign a
parameter(u,v) for each integral curve, i.e., all points on
the same integral curve share the sameu, andv parameters,
they only differ by w-parameter, which is determined
by the arc-length parameterization. Figure 6 and 9 show
tracing the integral curves inside the volumes.

D. Tracing on the walls

In the previous step, we construct the map for the interior
vertices. Now, we want to build the map between walls.
Tracing the integral curve on the walls can be viewed
as the degenerate case of tracing inside the volumes.
Restricting the volumetric harmonic function on the walls,
we have the surface harmonic function denoted bygD.

Given a triangleti jk = {pi, p j , pk}, let ei , ej andek denote
the oppositive edges. We define a rotation operatorrot that
rotates the edge 90 degree outwards the triangle. Then the
gradient on the triangleti jk is given by

∇gD = gD(pi)rot(ei)+gD(p j)rot(ej)+gD(pk)rot(ek).

Starting from the vertices on the boundary of floor∂B0, we
trace the integral curve following the gradient ofgD. The
integral curves are perpendicular to the iso-curves ofgD

and terminates on the boundary of ceiling∂B1. Figure 7
shows tracing the integral curves on the walls.

Note that the floor maph : BM
0 → BP

0 is a bijection, ash is
constructed by restricting the polycube map to the floor.
An integral curve is given by a unique(u,v) parameter
and the points on the same integral curve are differed by
the w parameter. Thus, the floor maph maps an integral
curve in M to a unique integral curve inP, which in
turn maps a point inM to a unique point inP. So, by

tracing the integral curves for every floor point, we build
the piecewise parameterization betweenM andP.

E. Properties

The proposed direct product volumetric parameterization
is guaranteed to be bijective.

Theorem: The handlebody M and its parametric do-
main P are partitioned into ceiling, floor and walls,
M = BM

0 ∪BM
1 ∪

⋃n
i=0DM

i , P = BP
0 ∪BP

1 ∪
⋃n

i=0DP
i . Define

harmonic function on M, fM : M → R, △ fM = 0, with
Dirichlet boundary condition, fM|BM

0
= 0 and fM|BM

1
= 1.

The harmonic function on P, fP : P→ R, is defined in a
similar fashion. Define a floor map h: BM

0 → BP
0 from the

M’s floor to P’s. If h is a bijection, then the harmonic
functions induced volumetric parameterization is also a
bijection.

Proof:

First, we show that two integral curves can not intersect
in M and P. Without loss of generality, letγ1 and γ2 be
two integral curves insideM. Assume they intersect at
one point p, then at p, the gradient of fM vanishes.p
is a critical point. If p is an interior point, becausefM
is harmonic, the maximum and minimum must be on the
boundaries. Therefore the Hessian matrix atp has negative
eigenvalue values. SupposefM(p) = s, then according
to Morse theory, the homotopy types of the level sets
f−1(s− ε) and f−1(s+ ε) will be different. At all the
interior critical points, the Hessian matrices have negative
eigenvalues, the homotopy type of the level sets will be
changed. The changes of the homotopy type can be not
canceled out. Therefore, the homotopy type of the bottom
should be different from that of the ceiling. Contradiction.
Therefore,γ1 andγ2 can not intersect at any interior point.



If γ1 and γ2 intersect at a pointp on the ceiling. Then
we can glue two copies of the same volume, along their
ceilings. And reverse the gradient field of one volume.
The union of the two gradient fields give us a harmonic
function field. Then there is no interior critical point
on the doubled volume.p becomes one interior critical
point. Contradiction again. Thereforeγ1 and γ2 have no
intersection points anywhere.

Next, we show that the integral curves induce a bijection
betweenM andP. GivenvM ∈ BM

0 a point on the floor of
M, let vP = h(vM) be the image on the floor ofP. Starting
from vM and vp, we get two integral curvesγM ∈ M and
γP ∈ P following the gradient offM and fP respectively.

Since the integral curves can not intersect inside the
volume and on the ceiling, the arc-length parameterization
induces a bijection betweenγM andγP. If the functionh is
a bijection, each floor vertex onM is uniquely mapped to
a floor vertex onP, which in turn maps an integral curve
in M uniquely to an integral curve inP. Thus, the induced
parameterization is a bijection. QED.

Our method can also guarantee that at any point in the
volume, thew parametric line is orthogonal tou and
v parametric lines, which is a natural consequence of
enforcing a conformal parameterization on the surface and
a gradient field in the volume. The reason is as follows:
we map each integral curve inM to a unique integral
curve inP. Both integral curves follow the gradient vector
field of the harmonic function, thus, are orthogonal to the
iso-surfaces of the harmonic function. Note that he iso-
surface induces theu and v parameters and the integral
curve induces thew parameter, thus, thew iso-parametric
line is perpendicular tou− andv− lines.

(a) (b)

Figure 6: Tracing the integral curves in the volumes. The
integral curves follow the gradient field of the harmonic
function and is perpendicular to the floor and ceiling.
Three pairs of integral curves are shown in M and P.
The corresponding curves are drawn in the same color.
Intuitively speaking, the position of the starting point on
the floor induces the u and v parameters, and the integral
curve induces the w parameter.

(a) (b)

(c) (d)

Figure 7: Tracing the integral curves on the walls. The
texture mapping shows the iso-curves of the harmonic
function restricted to the wall. The integral curve follows
the harmonic function and is perpendicular to the bound-
ary of the walls. Three pairs of integral curves are shown
in M and P. The corresponding curves are drawn in the
same color.

V. EXPERIMENTAL RESULTS

We tested our algorithm on models with various topology,
including, Bimba (genus-0), Rockerarm (genus-1), Cup
(genus-2) and Eight (genus-2).

We computed the polycube map using the variant of
divide-and-conquer method [11]. In [11], He et al’s
method can construct the polycube automatically by seg-
menting the shapes using horizontal planes and then
approximate each part using voxelization-like approach.
The resulted polycube is often complicated and has large
number of corners that are extraordinary points of the
polycube map. To reduce the number of singularities, we
prefer to construct the polycube manually. The divide-and-
conquer framework [11] can still apply to the manually
constructed polycube.

Taking advantage of the polycube map, we developed
a user-friendly interface that allows the users to easily
select the polycube faces by simple mouse click. With the
user-specified Dirichlet boundary condition, we solved the
discrete harmonic function using finite element method.
We used volume rendering to visualize the harmonic field



(a) Ceiling & floor (b) Walls

(c) Harmonic fields

(d) Isosurface of harmonic fields

Figure 8: Direct product parameterization of the genus-2
Cup model. (a) and (b) show the ceiling, floor and wall
decomposition. Each ceiling/floor is 2-hole disk and the
wall contains three topological cylinders. (c) shows the
volume rendering of the harmonic fields. (d) show the
isosurface of the harmonic fields.

inside the volumes, as shown in Fig. 2(d), 5 and 8.

We demonstrated the proposed volumetric parameteri-
zation algorithm on hexahedral mesh generation. Note
that the polycube domain has very natural hexahedral
tessellation. The volumetric parameterization induces a
map between the polycube and the given volume. Thus,
it also induces a hexahedral tessellation in the volume
dataset as shown in Fig. 10.

We compared our method with the existing ap-
proaches [33], [15], [18] and [34]. In [33], the volume

(a) (b)

Figure 9: Tracing the integral curves in M and P. (a) and
(b) show two different views of three integral curves. The
ceiling and floor are drawn in red and blue respectively.
The walls are rendered transparently. The corresponding
curves are drawn in the same color.

Figure 10: Construction of the hexahedral mesh using
direct-product volumetric parameterization.



Table I: Comparison to the existing approaches.
Wang [33] Li [15] Martin [18] Xia [34] Ours

Topology Topological balls Arbitrary bounded volumes Topological balls Star-shaped volumes Handlebody

Singularity No No 1d skeleton center point No
Bijectivity No No Yes Yes Yes

boundary is first mapped to the unit sphere, the bound-
ary mapping is a diffeomorphism. Then the boundary
diffeomorphism is extended to the interior by solving a
volumetric Dirichlet problem, using the boundary mapping
as the boundary conditions. Wang et al used finite element
method to solve the volumetric Dirichlet problem. In [15],
Li et al used fundamental solution method, which doesn’t
require the tessellation of the volume to solve the exact
same Dirichlet problem. In two dimensional case, Rado’s
theorem claims that if the target domain is convex, then
harmonic maps are diffeomorphisms. Unfortunately, in
volumetric case, even the target is convex and boundary
mapping is diffeomorphic, the volumetric harmonic map
may not be diffeomorphic. Therefore, neither Wang et al.
method [33] nor Li et al method [15] can not guarantee the
final mapping to be diffeomorphic. In [18], Martin et al
first specified a 1-dimensional skeleton inside the volume
and solve the volumetric harmonic map with Dirichlet
boundary conditions of the skeleton and the boundary
surface. The parameterization is constructed by tracing
the gradient field of the harmonic function. Martin et al’s
method works only for topological balls where the homo-
topy type of the offset surface of the skeleton is the same
as the boundary surface. Furthermore, the skeleton are
the critical points of the harmonic map, thus, the resulted
parameterization is singular on the skeleton. In [34], Xia et
al. proved that the Green’s function on star shaped volume
has a unique critical point, i.e., the center of the star shape.
As a result, the integration curves of the gradient of the
Green’s function do not intersect except at the center point.
Then they developed a method to parameterize star-shaped
volumes by tracing the integration curves of the gradient
of the Green’s functions. Xia et al’s method is guaranteed
to be a diffeomorphism. However, it only applies to star-
shaped volumes.

Our method is different from the above approaches in three
aspects: first, our method is guaranteed to be a bijection
if the floor map is bijective; second, our method works
for volumes with complex topology and geometry; third,
our parameterization does not have any singularity, thus,
is regular everywhere. Table I summarizes the properties
of the existing volumetric parameterization algorithms and
our method.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we present a novel approach to parameterize
volumes using harmonic fields. We first partition the
boundary surface into ceiling, floor and walls. Then we
compute the harmonic fields using the Dirichlet boundary
conditions. Next, by tracing the gradient of the harmonic

function, we can parameterize the given volume to the
parametric domain, such as a polycube. In contrast to the
existing approaches, the proposed algorithm guarantees to
produce a bijection without singularities. Furthermore, it
is able to parameterize volumes of non-trivial topology
and geometry.

The proposed algorithm has limitations. Firstly, the de-
composition for the models with complicated topol-
ogy/geometry may not be intuitive. For example, the two
handles of the genus-2 Cup model is twisted. Thus, it
requires the users to be very skilled and experienced to
decompose the boundary mesh. Secondly, tracing the inte-
gral curves highly depends on the quality of the tetrahedral
mesh. In the future, we will develop automatic algorithm
to partition the boundary surface. We will also investigate
robust and efficient algorithm to improve the tracing step.
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