Direct-Product Volumetric Parameterization of Handlebodies via Harmonic

Fields
Jiazhi Xia Ying He Xiaotian Yin
School of Computer Engineering School of Computer Engineering  Department of Computer Science
Nanyang Technological University Nanyang Technological University Stony Brook University
Singapore Singapore Stony Brook, USA
Email: xiaj0002@ntu.edu.sg Email: yhe@ntu.edu.sg Email: xyin@cs.sunysb.edu
Shuchu Han Xianfeng Gu
School of Computer Engineering Department of Computer Science
Nanyang Technological University Stony Brook University
Singapore Stony Brook, USA
Email: schan@ntu.edu.sg Email: gu@cs.sunysh.edu

Abstract—Volumetric parameterization plays an important |
role for geometric modeling. Due to the complicated topolog i
ical nature of volumes, it is much more challenging than the ! /
1 = X

surface case. This work focuses on the parameterization of
volumes with a boundary surface embedded in 3D space. The
intuition is to decompose the volume as the direct product of
a two dimensional surface and a one dimensional curve. We
first partition the boundary surface into ceiling, floor and
walls. Then we compute the harmonic field in the volume
with a Dirichlet boundary condition. By tracing the integral
curve along the gradient of the harmonic function, we can
parameterize the volume to the parametric domain. The
method is guaranteed to produce bijection for handlebodies
with complex topology, including topological balls as a de-
generate case. Furthermore, the parameterization is regat . . . .
everywhere. We apply the proposed parameterization method Figure 1: Handlebodies can be viewed as direct product
to construct hexahedral mesh. of shapes in lower dimension. (a) Solid cube is the direct

product of three line segments. (b) Solid torus is the direct

Keywords-Solid modeling, volume parameterization, hexahe-  product of a disk and a circle.
dral mesh, polycube, harmonic fields, handlebody, direct-
product.
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map does not guarantee to be bijective even though the
|. INTRODUCTION parametric domain is convex. Therefore, it is technically
challenging to generalize the surface parameterization to
Most real-world shapes are volumetric. The need for vol-volume case.
umetric parameterization is ubiquitous in various redearc
fields. In medical imaging, for example, the registration
between two 3D image data sets can be reduced to buildin . . .
a map between their underlying parameter domains. | 1€ d'n_aCt product of 2-dimensional surface and a 1
finite element simulations, hexahedral meshes areahighlg'm?ns'o.nal curve. These models are Very common in
desired representation for volumes, while such a mesh cal pgineering fields, thus, the parameterization of such

be easily built out of the parameterization using certaing]c’de!S 'i hlghlyt deswabl_e. 'I\IOt? thtat magy canc;r;;::al
canonical domains. omains have extremely simple structures. Some of them

are just direct product of shapes from lower dimensions.
Unlike the widely studied surface parameterization, volu-Figure 1 shows examples including a solid cube, which is
metric parameterization has not drawn too much attentionthe direct product of three 1-dimensional line segments,
this is mainly because of the intrinsic difference betweerand a solid torus, which is the direct product of a 2-
surface and volume. For example, it is well-known thatdimensional disk and a 1-dimensional circle. The reason
a harmonic map between a topological disk and a planawe prefer direct product domains is two-folded. Firstly,
convex domain is diffeomorphic, if the boundary map isthere is no singularity in a direct product domain, thus
a homeomorphism. This result plays an important role inthe parameterization would not degenerate at any point
surface parameterization. Unfortunately, such an approacof the volume. Secondly, such structures will make many
is not applicable for volumes, i.e., volumetric harmonictasks easier, such as volumetric remeshing, volumetric

In this work we focus on the parameterization of 3-
imensional handlebodies that can be decomposed into
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(@) Input  (b) Domain (c) Boundary decomposition  (d) Harneofield (f) Volumetric parameterization

Figure 2: Direct product volumetric parameterization. The input iserahedral mesh representing a 3D handlebody. We
parameterize the boundary mesh to a polycube which als@sehe parametric domain of the volume parameterization.
Then we decompose the boundary mesh into ceiling (red), foe) and walls (yellow). The ceiling and floors are
topological annulus, the walls contain two topologicalinglers. Next, we compute volumetric harmonic functionf wit
the Dirichlet boundary conditions. Finally, the harmonielfls induce a homeomorphism between the handlebody and
the polycube domain. The cut view illustrate the volumgiecameterization.

registration, physical simulation and so on. Il. RELATED WORK

Given a 3D handlebodM, we first construct a parametric A. Surface Parameterization

domain P. To facilitate th_e hexahedral remeshing, we g, fy.q parameterization has been extensively studied in
choose ponqpbe_ due to its regular structure. Then, we,, past decades. The survey papers by Sheffer et al
compute a bijective map between the boundary surfacegs) ang Floater et al [8] are good reference for general
oM anddP. Next_, we partitiongP Into ceiling, floor a”?'_ interests. Many linear methods have been proposed for
walls. The bijective polycube map induces .the part|t!onthe conformal mapping. For example, DCP [6] and LSCM
of aM We compute the yc_)lum_etr|c ha”"?,”'c map with [14] are two of the earliest works that can handle multi-
a.DlrlchIet boundary condition, i.e., thg ceﬂmg POINt®ar \oiad annuli. Both of them construct the mapping by
with boundary value 1, and floor points with boundary gqying certain linear systems with fixed or free boundary
valu_e 0. Finally, we cpnstructa map betw@s_ﬂrandP_by conditions. Slit map [35] is another linear method pro-
tracing the gradient field of harmonic functions. Figure 2,,q0 15 achieve regular boundaries of the annulus, where
ShOWSI the palrameterlzathn of the genus-1 Rockerarmy yhe houndaries are mapped to parallel straight slits or
model to a polycube domain. concentric circles and arcs. Mullen et al [30] presented
_ spectral conformal parameterization that finds the largest
The proposed method has the following features: eigenvalue/eigenvector of a generalized eigenvalue prob-
lem involving sparse, symmetric matrices. This method

) ) _ . does not have the common artifacts due to positional
« The algorithm is able to parameterize volumes With ., straints on vertices.

complex topology. It can also be downgraded and ap-

plied to volumes with trivial topology (i.e. topological Though computationally efficient, the above methods lack
balls). the flexible control on the boundaries. It turns out that

« The parametric domain is simple and easy to confiner control on the boundaries usually incurs much heav-
struct. Loosely speaking, it is the direct product of ier computation. Discrete curvature flow uses curvature
a surface patch and a line segment. The resultegonstraints to guide the metric deformation. Several non-
map between the original volume and the parametelinear computational methods have been proposed along
domain is bijective, and there is no singularity. To this line, such as the circle pattern by Kharevych et
our knowledge, our method is the first work that canal [13], the discrete Ricci flow by Jin et al [12] and

guarantee the bijectivity of the parameterization forthe conformal equivalence by Springborn et al [24]. To
volumes with non-trivial topology. alleviate the computational burden, Ben-Chen et al [1]

« At any point in the volume, thes iso-parametric lines proposed a linearized method with a trade-off that depends
(which follow the gradient of the harmonic field) are on applications. All these methods allow the users to
orthogonal tou and v iso-parametric lines (which design the boundary shape by prescribing the appropriate
span the iso-surfaces of the harmonic field). curvature on the boundary (as well as that inside).

B. Volume Parameterization
The rest of the paper is organized as follows. Section

Il briefly reviews the related work. Section Il explains Harmonic map plays an important role in surface param-
the necessary notations and background knowledge. Theterization. In [33], Wang et al generalized the surface
algorithm details are presented in Section 1V, followedharmonic map to volumes. They derived the formula of
by some experimental results and comparisons in Sectiothe the discrete harmonic map on tetrahedral meshes and
V. We conclude the paper and point out several futureghen proposed a method to map genus-0 volumes to solid
directions in Section VI. balls.



Li et al [15] [16] used the method of fundamental so- Embedded Voronoi graph contains the full symbolic infor-
lution to build a mapping between volumes with the mation of the Voronoi diagram and the medial axis of the
same topology. This method is essentially a simulatiorobject, and a geometric approximation to the real geome-
of electric fields over point clouds, and requires to placetry [7]. In [22], the algorithm uses the embedded Voronoi
sufficient number of points (i.e. electric charges) off thegraph to decompose the volumes into simple sub-volumes
boundary to enforce an approximated boundary conditionthat can be further meshed using conventional meshing
Li et al's method is able to parameterize the handlebodiesnethods. This method can handle arbitrary volume even
but it is computationally expensive to solve the harmonicif the medial axis is degenerate.

map using fundamental solution method. Furthermore, th

resulted map is not a bijection, fh our approach, we parameterize volumes to polycube

domain. Note that the parametric domain is just the union

Martin et al [18] presented a method to parameterize volof small cubes, thus, the parameterization induces a regula

umes to the cylinder. By choosing a 1-dimensional skelehexahedral meshing of the given volumes, i.e., every

ton inside the volume, they solved a harmonic map usindnterior vertex is adjacent to exactly six edges. To our

the skeleton and the boundary surface as the boundaknowledge, none of the existing approaches can generate

constraints. By tracing the gradient field of the harmonicsuch regular hexahedral meshes.

function, they constructed a map between the volumes

and the cylinder. Note that this method parameterizes onlyp. Polycube Map

topological balls and can not process general handlebod- ) ,

ies. Furthermore, the skeleton is the singularity of theQur @lgorithm is closely related to the polycube map

constructed map. which is used to compute the map between the boundary
surfaces. The concept of polycube map was pioneered by

Recently, Xia et al [34] showed that the Green’s functionsTarini et al [27]. Wang et al proposed an intrinsic method

on star-shaped volume has a unique critical point andhat guarantee to produce a one-to-one map between the

then developed a method to parameterize star shapes. Thelycube and 3D model [31]. Later, they developed a

constructed map is guaranteed to be a diffeomorphism. method that allows the user to specify the extraordinary

- oints [32], and applied to the construction of manifold
In contrast to the existing approaches, the proposeg

method is able to parameterize general handlebodies wit
a direct-product parameter domain without any singularitye

plines [9]. Lin et al presented an automatic algorithm to
onstruct polycube maps for 3D models with simple geom-
try and topology [17]. Recently, He et al presented an al-
gorithm to automatically construct polycube map [11]. By
C. Hexahedral Mesh Construction taking advantage of the divide-and-conquer strategyr thei
method can process large-scale models easily. However,

Hexahedral meshes are widely used in computer-aidetheir method is orientation dependent and usually leads
design and manufacturing due to its promising propertie$0 polycubes with large number of extraordinary points.
in the analysis stage [2], [5]. However, constructing highTo our knowledge, all these approaches focus on surface

quality hexahedral mesh is a challenging problem [3]. polycube maps, while our work starts from such a surface
polycube map and then extends to the bounded volumes.
The grid-based algorithms first fill the interior of the

volume with a regular grid and then adaptively fit the I1l. THEORETICAL BACKGROUND

boundary vertices [20], [21]. The generated meshes have

nearly perfect elements in the interior, however, the quali In this section we briefly introduce some necessary back-
near the boundary is usually poor. ground knowledge that is underlying our algorithm, as

. _ ) _ well as the notations used in the paper.
Plastering [4] is a natural 3D extension of paving algo-

rithms that have proven reliable for quadrilateral mesh—A_ Handlebodies

ing on surfaces. Starting from the quadrilateral bounding

meshes, fronts are determined and then advanced inwargh general, am-hole (> 1) handlebody is a 3-manifold
This algorithm frequently has deficiencies when opposingvhose boundary is a surface that can be continuously
fronts collide and can not resolve the unmeshed centefieformed to some unknottedhole torus without tearing
voids due to being over-constrained by a pre-existingor self intersection. For such a volunté, its boundary
boundary mesh. The unconstrained plastering techniqueurfacedH can be covered by a set of charts,

[25], [26] leverages the benefits of paving and plastering,
without the over-constrained nature of plastering. n
_ _ _ dH =BoUB U JD;
Whisker weaving algorithm [28], [29] also starts from i
a pre-defined boundary quad mesh. It first builds the

combinatorial dual of a mesh based on the spatial twistvhere By and B; are calledbases or to be specificBy
continuum and then constructs the primal mesh and ités thefloor andB; the ceiling respectively. They are two
embedding afterwards. disjoint n-hole annuli,BoNB; = @. EachD;(i € [0..n]) is



called awall, which is a topological cylinder with both C. Volumetric Harmonic Function
ends open. All the walls are pairwisely disjoil,ND; =
a(i #]). A baseBy(k € {0,1}) and a wallD(l € [0..n])  In general, a scalar functiof is harmonic if it satisfies

intersect at a 1-dimensional simple loof = BxNDi.  the Laplace's equatior\ f = O with Dirichlet boundary
Figure 3 shows the Figure Eight model which is a 2-holecondition. This concept can be generalized to discrete
handlebody. tetrahedral mesh [33].

Given a tetrahedral med¥, let f : V — R be a real valued
function defined over the vertices, Igt=f(pi) ,pieV. f

is harmonic if and only if it satisfies the following discrete
Laplace’s equation:

Y ky(fj—f)=0
eijEE

wheregj is an edge connecting vertgx to p; andk;;

is a real valued weight assigned wigh). Following [33]
[19], we define the weights as follows. Suppose eglges
shared bym adjacent tetrahedra, it lies agaimstdihedral
angles{6}, k=1,---,m. Then the edge weight fog;

can be defined aj = 15 S 4 lij cotb, wherel;j is the
Figure 3: Direct product of Figure Eight model. The |ength of edges;.

parametric domain (a genus-2 polycube) is the direct

product of 2-hole disk and line segment, see (a). Both th&ame to that in the smooth setting, we can impose

volume and the po|ycube domain can be decomposed imlairichlet boundary conditions on the discrete volumetric
ceiling, floor and walls, see (b)-(c). harmonic function. Namely, we set the value offixed

on certain vertices; € V;, whereV, is the set of vertices
As a special case, volumes without any handle (i.e. topothat serve as constrained vertices.

logical solid balls) can be considered as degenerate h"’md@nce a harmonic functioh is computed over a tetrahedral
bodies withn = OZ _The b(_)undary surface for such bodies mesh, one can compute its gradientt, which is a vector
can a_Iso be partl_tlone_d into bases _and walls, V\_/here eacﬁ]eld that is piecewise constant. An integral curve of the
base is a topological disk and there is only one single Wa”gradient vector field is a curve such that the tangent vector

equals the gradient. Tracing such integral curves will lead
B. Volume Parameterization to a volumetric parameterization.

(b) Ceiling & floor (c) Walls

For surfaces, parameterization is the process of computing

a mapping between the original surface mestRiand IV. DIRECT PRODUCT VOLUMETRIC
a parametric domain that is usually a planar mesh in PARAMETERIZATION

R2. This is equivalent to assigning a pair of real valued

coordinates to every vertex in the mesh. A. Overview

Parameterization for volumetric data can be defined ina ) ]
similar fashion. Given a tetrahedral mesh= (V,E,F,T) N this section, we choose the polycube as the parametric
whereV, E, F, T are the set of vertices, edges, trianglesdomain due to the following reasons: first, polycube has

and tetrahedral respectively. Each vengx V is assigned @ regular structure and can be used to construct all-
with a triple coordinatesu;,vi,w). This is equivalent to hexahedral meshes; second, there are well-developed tech-

compute three real valued parameter functions: niques to construct the polycube map that serves the map
between the boundary surfaces; third, due to the geometric
{u,y,w}:V =R simplicity, it is usually easier to partition the boundary

_ L surface of polycube than that of the input model.
Note that although these functions are by definition re-

stricted on vertices, it can be extended through out th&ince the goal is to parameterize the given volule
whole tetrahedral mesh piecewisely. Namely, the functiorto the polycubeP, we need to compute the parameter
value for an arbitrary point in the volume is defined asfunctions(u,v,w)y and(u,v,w)p for M andP respectively.
the interpolation of the values on the four vertices of Then we construct a function that mapsv)u to (u,v)p.
the tetrahedron. In this paper we use the same symbdlinally, the parameterizatiop: M — P is induced by the
to denote both the function restricted to vertices and thatmap (u,v,w)m — (u,v,w)p. This idea can be illustrated
extended to the volume. using the following commutative diagram:



P:M—P

|

(VWi i We

manually to reduce its complexity which facilitates the

boundary decomposition. Then, we partition the boundary
surfaces into bases (ceiling and floor) and walls. Note
that the polycube domain has simpler structure than the
original surface. Thus, it is much easier to partition the

polycube boundary surface than the original model. To
do this, the user just simply choose the desired polycube

The proposed direct product volume parameterization confaces by several mouse clicks. By taking advantage of

tains the following steps:

o Input: A tetrahedral mesM for a handle body and
a polycubeP.
« Output: A bijectiongp: M — P.
1) Partition the boundary surfacé® anddP into
basesB; and wallsDj ;
2) Compute harmonic functionf, and fp using
the partition as Dirichlet boundary conditions;
3) Trace the integral curves for every interior ver-
tex.
4) Trace the integral curves on the walls.

(d)

Figure 4: Partition the boundary surface into ceiling,

the bijectivity of the polycube map, the partition oP
naturally induces a partition @M. Let BM andBf denote
the bases fodM anddP respectively. SimilaD}' andDY
denote the walls. Figure 4 and 8 show the partition of the
genus-0 Bimba and genus-2 Cup via the polycube maps.

With the ceiling/floor/wall partition, we are ready to com-
pute the harmonic fields for bott andP. Specifically, we
solve two harmonic functionfy : M — R andfp: P — R,
such that

Af(p)=0, Vp¢ BoUBy
f(p)=0, VpeBy

f(p)=1, VpeBs.

Figure 5 show the computed harmonic fieldsMnand P
of the genus-0 Bimba model.

C. Tracing inside the volume

To trace the integral curve, we need to compute the
gradient offy; and fp. Given an arbitrary scalar functiap

the gradientlg can be computed as follows [10]: suppose
tij is a tetrahedron with verticelgi, pj, px. pi }, the face

on the tetrahedron against vertgxis fj; similarly pj, px,
andp, are againsfj, fi, andfj, respectively. We defing

to be the vector along the normal &f with length equal

to 2 times the area ofi, and so carsj,s, s be defined.
Then, the gradient of in tjj is a constant vector field

Ug=9g(pi)s +9(pj)sj +9(P)s«+9(P1)s -

We then define the vertex gradient as the average of the
gradient vectors in the neighboring tetrahedra.

The parameterization from thigl to P is constructed as
follows: given an interior poins € M, we trace the inte-
gration curvey of the gradient fieldJfy. The integration
curve y intersects the ceiling and floor at € B/ and

qeBY.

floor and walls. We first construct the polycube map forusing the polycube map, we can define a floor niap
the boundary surface The top and bottom faces of thgM . BY that maps each floor pointc BY to ¢ € B.

polycube serve the ceiling and floor and the remaining
e

part is the wall. The polycube map induces the surfac
partition on the 3D model.

B. Computing the harmonic fields

Given a tetrahedral med¥i and the user-constructed poly-
cube domairP, we first construct the polycube map be-
tween the boundary surfacé® anddP using the divide-

Then we compute an integral curyestarting fromq’ and
following Ofp. y intersects the ceiling gf € BY. Then we
can find a unique poing' € y such thatfp(s) = fu(s).
The points € P is the image ofs, i.e., ¢(s) = . By
computing the images for every interior vertexNhy we
build the parameterization between the interioffand

Note that each integral curve starts from a point on the

and-conquer approach by [11]. We design the polycubdloor and then terminates at a point on the ceiling. Since
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Figure 5: Computing the harmonic fields of the genus-0 Bimba model.dMe & volumetric harmonic mapf =0
with boundary conditions (Bp) = 0 and f(B;) = 1. The volume renderings (a)-(d) show the computed harmaglitsfi
on the polycube and 3D model. (e) shows several iso-surfaickarmonic fields.

the floor is ag-hole disc if IM is of genusg, we can tracing the integral curves for every floor point, we build
map theg-hole disc to planar domain and then assign athe piecewise parameterization betwéérand P.
parametefu,v) for each integral curve, i.e., all points on
the same integral curve share the samandv parameters,
they only differ by w-parameter, which is determined
by the arc-length parameterization. Figure 6 and 9 sho
tracing the integral curves inside the volumes.

E. Properties

“he proposed direct product volumetric parameterization
is guaranteed to be bijective.

D. Tracing on the walls Theorem: The handlebody M and its parametric do-
main P are partitioned into ceiling, floor and walls,

In the previous step, we construct the map for the interioM = BY UBY' UULoDM, P = Bf UB} UU[LoDf. Define

vertices. Now, we want to build the map between walls.harmonic function on M, \f : M — R, Afy = 0, with

Tracing the integral curve on the walls can be viewedDirichlet boundary condition, yf|gw = 0 and f[gw = 1.

as the degenerate case of tracing inside the volumedhe harmonic function on Ppf P — R, is defined in a

Restricting the volumetric harmonic function on the walls, similar fashion. Define a floor map:tBY — Bf, from the

we have the surface harmonic function denotedyby M's floor to P’s. If h is a bijection, then the harmonic

) ) functions induced volumetric parameterization is also a
Given a triangldijx = {pi, pj, Pk}, let &, j ande, denote bijection.

the oppositive edges. We define a rotation openatothat
rotates the edge 90 degree outwards the triangle. Then tioof:

gradient on the trianglgc is given by First, we show that two integral curves can not intersect

Ogp = go(pi)rot(e) +go(p;)rot(e;) +go(pk)rot (). in M and P. Without loss of generality, leys and y» be

two integral curves insidé. Assume they intersect at
one pointp, then atp, the gradient offy vanishes.p

is a critical point. If p is an interior point, becauséy

is harmonic, the maximum and minimum must be on the
boundaries. Therefore the Hessian matrip &ias negative
eigenvalue values. Suppodg(p) = s, then according

to Morse theory, the homotopy types of the level sets
Note that the floor map: BY' — Bf is a bijection, ahis ~ f~1(s—¢) and f~1(s+¢) will be different. At all the
constructed by restricting the polycube map to the floorinterior critical points, the Hessian matrices have negati
An integral curve is given by a uniqu@s,v) parameter eigenvalues, the homotopy type of the level sets will be
and the points on the same integral curve are differed bghanged. The changes of the homotopy type can be not
the w parameter. Thus, the floor mdpmaps an integral canceled out. Therefore, the homotopy type of the bottom
curve in M to a unique integral curve i, which in  should be different from that of the ceiling. Contradiction
turn maps a point irM to a unique point inP. So, by  Thereforey; andy, can not intersect at any interior point.

Starting from the vertices on the boundary of flé@y, we

trace the integral curve following the gradient@j. The

integral curves are perpendicular to the iso-curvegof
and terminates on the boundary of ceilid®;. Figure 7
shows tracing the integral curves on the walls.



If y1 and y, intersect at a poinp on the ceiling. Then
we can glue two copies of the same volume, along their
ceilings. And reverse the gradient field of one volume.
The union of the two gradient fields give us a harmonic
function field. Then there is no interior critical point
on the doubled volumep becomes one interior critical
point. Contradiction again. Therefose and y» have no
intersection points anywhere.

Next, we show that the integral curves induce a bijection
betweenM andP. Givenv™ € BY a point on the floor of
M, letvP = h(vW) be the image on the floor &¥. Starting
from WM andvP, we get two integral curvegy € M and

v € P following the gradient offyy and fp respectively.

Since the integral curves can not intersect inside the
volume and on the ceiling, the arc-length parameterization
induces a bijection betwegfy andyp. If the functionh is

a bijection, each floor vertex av is uniquely mapped to

a floor vertex ornP, which in turn maps an integral curve
in M uniquely to an integral curve iR. Thus, the induced
parameterization is a bijection. QED.

Our method can also guarantee that at any point in the §
volume, thew parametric line is orthogonal ta and

v parametric lines, which is a natural consequence of
enforcing a conformal parameterization on the surface anéfigure 7: Tracing the integral curves on the walls. The
a gradient field in the volume. The reason is as follows:exture mapping shows the iso-curves of the harmonic
we map each integral curve N to a unique integral function restricted to the wall. The integral curve follows
curve inP. Both integral curves follow the gradient vector the harmonic function and is perpendicular to the bound-
field of the harmonic function, thus, are orthogonal to theary of the walls. Three pairs of integral curves are shown
iso-surfaces of the harmonic function. Note that he isoin M and P. The corresponding curves are drawn in the
surface induces the and v parameters and the integral same color.

curve induces the parameter, thus, the iso-parametric

line is perpendicular te— andv— lines.

(d)

V. EXPERIMENTAL RESULTS

We tested our algorithm on models with various topology,
including, Bimba (genus-0), Rockerarm (genus-1), Cup
(genus-2) and Eight (genus-2).

We computed the polycube map using the variant of
divide-and-conquer method [11]. In [11], He et al’s
method can construct the polycube automatically by seg-
menting the shapes using horizontal planes and then
approximate each part using voxelization-like approach.
The resulted polycube is often complicated and has large
number of corners that are extraordinary points of the
polycube map. To reduce the number of singularities, we
prefer to construct the polycube manually. The divide-and-
Figure 6: Tracing the integral curves in the volumes. The conquer framework [11] can still apply to the manually
integral curves follow the gradient field of the harmonic constructed polycube.

function and is perpendicular to the floor and ceiling.

Three pairs of integral curves are shown in M and P.Taking advantage of the polycube map, we developed
The corresponding curves are drawn in the same colord user-friendly interface that allows the users to easily
Intuitively speaking, the position of the starting point on Select the polycube faces by simple mouse click. With the

the floor induces the u and v parametersl and the integrapser'speciﬁed Dirichlet boundary Condition, we solved the
curve induces the w parameter. discrete harmonic function using finite element method.

We used volume rendering to visualize the harmonic field

(b)
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(a) Ceiling & floor (b) Walls @) (b)

\ Figure 9: Tracing the integral curves in M and P. (a) and

/' _ v (b) show two different views of three integral curves. The

ceiling and floor are drawn in red and blue respectively.

The walls are rendered transparently. The corresponding

8 @ curves are drawn in the same color.

(c) Harmonic fields

(d) Isosurface of harmonic fields
Figure 8: Direct product parameterization of the genus-2
Cup model. (a) and (b) show the ceiling, floor and wall
decomposition. Each ceiling/floor is 2-hole disk and the
wall contains three topological cylinders. (c) shows the

volume rendering of the harmonic fields. (d) show the
isosurface of the harmonic fields.

Hho
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el

inside the volumes, as shown in Fig. 2(d), 5 and 8.

We demonstrated the proposed volumetric parameteri-
zation algorithm on hexahedral mesh generation. Note
that the polycube domain has very natural hexahedral
tessellation. The volumetric parameterization induces a
map between the polycube and the given volume. Thus,
it also induces a hexahedral tessellation in the volume
dataset as shown in Fig. 10.

We compared our method with the existing ap-Figure 10: Construction of the hexahedral mesh using

proaches [33], [15], [18] and [34]. In [33], the volume direct-product volumetric parameterization.




Table I: Comparison to the existing approaches.

| | Wang [33] | Li [15] | Martin [18] | Xia [34] | Ours |

[ Topology | Topological balls| Arbitrary bounded volumed Topological balls| Star-shaped volume$ Handlebody |
Singularity No No 1d skeleton center point No
Bijectivity No No Yes Yes Yes

boundary is first mapped to the unit sphere, the boundfunction, we can parameterize the given volume to the
ary mapping is a diffeomorphism. Then the boundaryparametric domain, such as a polycube. In contrast to the
diffeomorphism is extended to the interior by solving a existing approaches, the proposed algorithm guarantees to
volumetric Dirichlet problem, using the boundary mappingproduce a bijection without singularities. Furthermote, i
as the boundary conditions. Wang et al used finite elemens able to parameterize volumes of non-trivial topology
method to solve the volumetric Dirichlet problem. In [15], and geometry.

Li et al used fundamental solution method, which doesn’t

require the tessellation of the volume to solve the exact '© Proposed algorithm has fimitations. Firstly, the de-

same Dirichlet problem. In two dimensional case, Rado'<composition for the models with complicated topol-

theorem claims that if the target domain is convex, the pgy/geometry may not be intuitive. Fo_r exgmple, the tW(_)
harmonic maps are diffeomorphisms. Unfortunately, in andles of the genus-2 Cup model is twisted. Thus, it

volumetric case, even the target is convex and boundar quires the users to be very skilled and exp_erienceq to
mapping is diffeomorphic, the volumetric harmonic map ecompose the boundary mesh. Secondly, tracing the inte-

may not be diffeomorphic. Therefore, neither Wang et al_gral curves highly depends_ on the quality of th_e tetrah_edral
method [33] nor Li et al method [15] can not guarantee themeSh' _I_n the future, we will develop au'_[omat|c_ algor_lthm

final mapping to be diffeomorphic. In [18], Martin et al to partition the_ t_)oundary_surface_. We will also investigate
first specified a 1-dimensional skeleton inside the volumd@Pust and efficient algorithm to improve the tracing step.
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